
1

Exercises for Chapter 3, The Critical Point

1. The phase transition point
One of the hallmarks of a continuous phase transition is that an order parameter
continuously changes value as a function of a control parameter. The region
where the order parameter rapidly changes can be used to identify the phase
transition point. To illustrate this, Figure 3.3 in the book shows a plot of firing rate
(order parameter) against the constructed branching ratio (control parameter) for
a simple branching model network. Another signature of a continuous phase
transition is that some functions will show sharp peaks near the phase transition
point. For example, Figure 4.5 in the book shows that the susceptibility of a
branching model has a peak near the phase transition region.

A. Phase plot: In these exercises, we will see if similar plots can be made with a

spiking neural network model. The well-known Brunel model (Brunel, 2000,
Journal of Computational Neuroscience) consists of 80% excitatory and 20%
inhibitory integrate and fire neurons sparsely connected to each other (at 10%
connectivity). Jonathan Touboul and Alain Destexhe made a computational
model of this network (Destexhe and Touboul, 2021, eNeuro) with open
source code. I have modified their code to create the Matlab function
BrunelNetworkFunctionTimeConstant. In this version of the model there is no
random background activity driving the network. Rather, the network is
stimulated once by simultaneously activating a fraction of the neural
population.

Exercise: Using this function, record the average firing rate (“FR,” the order
parameter) of the Brunel model under different values of the control
parameter, “g.” To do this, set “ratio” = 1, “Jc” = 1 and vary “g” from 0 to 5 in
small steps (say 0.25).

Use this line of code to get the FR for a single set of input values:

[A chi FR] = BrunelNetworkFunctionTimeConstant(gee, ratio, Jc)

Based on this plot of FR vs g, where would you predict the phase transition to
be (in terms of the value of “g”)?

B. Peak in time constant: Continuing with the Brunel model, again use
BrunelNetworkFunctionTimeConstant (with “ratio” = 1, “Jc” = 1) to plot the
network activity over time in response to a single stimulation. This information
is given by plotting the output variable “A” (see the figure below for
examples). You can get such plots by using these lines of code:

figure; plot(A); xlabel("Timesteps"); ylabel("Neurons active");
ylim([0 1000]);

2

Exercise: How does the response to stimulation change as the control
parameter “g” is increased, like in the previous exercise? Note that the
network activity can quickly rise, quickly decay, or slowly decay. To quantify
the time of this change, run the script BrunelTimeConstantFinal to fit
exponential curves to the average of 30 stimulations for each value of “g.”
Note: this requires the Matlab Curve Fitting Toolbox, so don’t do this if you do
not have the toolbox. To use the Brunel network simulation, just type this in
the Matlab Command Window:

BrunelTimeConstantFinal;

You should get several plots that look like this:

3

You should also get a plot of the time constants found vs “g” (not shown here –
for you to find out).

2. Looking at data
The book discusses how avalanches from a network near the critical point should
approximately follow power law distributions (page 56, Figure 3.4 for models; page 66,
Figure 3.11 for experimental data). For example, Figure 3.11 shows distributions plotted
in log-log coordinates for avalanche size, duration and average size vs. duration. These
distributions should have regions that can be fit by straight lines if the network is near
the critical point. For these exercises, data of several different types are available: (1)
Spiking data from cortical slice cultures placed on a 512-electrode array, (2) Spiking
data from dissociated cultures grown on 60-electrode arrays, (3) Local field potential
(LFP) data from cortical slice cultures placed on 60-electrode arrays. These data are
recordings of spontaneous, unstimulated activity. We will examine the data’s structure
and then work our way toward plotting power law distributions and examining other
signatures of operating near the critical point.

C. Structure of neural network activity: We will first look at the structure of the

data at long-time scales and at short time scales. Select one of the data sets
from the folders provided. For example, go into the folder “OrganotypicData”
and then the subfolder “Mouse” and load “DataSet4” into the Matlab
workspace. You can do this by dragging and dropping it, as in the screenshot
below. Alternatively, go to the Home tab in Matlab and then click on the
Import Data button.

Second, if necessary, get the data into TIMERASTER format. (1) If the data
are from the “LFP60Data” folder, they already have a TIMERASTER variable
present after loading and you do not need to do this step. (2) If you are
loading data from the “DissociatedCultures” folder, you should use the
function Dissociated2TIMERASTER to produce a TIMERASTER for analysis,
like this:

[TIMERASTER] = Dissociated2TIMERASTER(data);

4

(3) If you are using data from the “OrganotypicCultures” folder, after the data
are loaded into Matlab you should see a cell array with the name ASDF. To
convert this cell array into TIMERASTER format, use the function
ASDFToSparse like this:

[TIMERASTER, binunit] = ASDFToSparse(ASDF);

Once you have a TIMERASTER in your Matlab workspace you can use the
function VisualizeRaster to plot the data in raster form (neuron number on y-
axis, time on x-axis, blue dots represent spikes or suprathreshold LFPs). Most
recordings are 1 hr long and so should have 3.6×106 time steps when the
time bins are 1 ms long. Use the function like this:

VisualizeRaster(TIMERASTER);

Use the zoom tool on the figure to look at a network burst at shorter time
scale. This script will also plot the population activity at each time step, which
is just the number of neurons active in each time bin. If you zoom into this
plot, you should be able to see an individual avalanche where there is a
series of consecutively active time bins bracketed by inactive time bins.

5

Exercise: Describe how the temporal structure differs between spike data and
LFP data. How does the temporal structure differ between spiking data
recorded from organotypic cultures (using the 512 electrode array) and
spiking data recorded from dissociated cultures (using the 60 electrode
array)? Notice that for very large numbers of neurons, it becomes more
difficult to find an inactive time bin. Under these circumstances, can you
suggest how avalanches be defined?

D. Avalanche distributions: Using the function AvalancheAnalysis, plot the
distributions for avalanche size, duration and average size for a given
duration. Use it like this:

[sizeDist, durationDist, SvsT, Events] = AvalancheAnalysis(TIMERASTER);

Save the output variables sizeDist, durationDist, SvsT, and Events for
later use (e.g., see part G below).

Exercise: Do all the distributions show sharp power laws? Can you identify
distributions that look slightly subcritical or slightly supercritical (see Figure
3.10)? Take a random sample of 20 data sets. What fraction look like they
have straight power law regions? Example plots are shown below.

6

E. Rebinning the data: Many of the spike data sets are binned at 1 ms
resolution. This resolution may be too small for some data sets, because the
time it takes for activity to propagate from one recording site to the next
nearest site may be greater than 1 ms. If this is the case, then the data will be
artificially fragmented. Under these conditions, the avalanche distributions will
curve downward, presenting as subcritical. What is needed is a bin width that
approximately matches the average propagation time between adjacent
recording sites. To find this proper bin width, you can use the function
rebinRaster like this:

[TIMERASTER2] = rebinRaster(TIMERASTER, 2);

This takes a “TIMEASTER” originally binned at 1 ms resolution and creates
“TIMERASTER2” binned at 2 ms resolution. Gradually increase the bin width
until you see nearly straight power laws. This works for data that show
signatures of criticality but will not work for data that are truly subcritical (as
we will see later). For more details, see this paper: (Notarmuzi, Daniele,
Claudio Castellano, Alessandro Flammini, Dario Mazzilli, and Filippo
Radicchi. "Universality, criticality and complexity of information propagation in
social media." Nature communications 13, no. 1 (2022): 1-8.)

Exercise: Now, if you go back to your 20 randomly sampled data sets and re-
bin them at larger values, what fraction of them appear to have straight power
law segments when passed through the AvalancheAnalysis function? If you
re-bin by a factor of 20 or 30, can you make the avalanche distributions look
supercritical, like what is shown in Figure 3.10 C of the book?

F. Temporal structure (shuffling): The avalanche size distributions reflect the
propagation of activity through neural networks at relatively short time scales.
It would stand to reason then that disrupting the temporal structure of these
avalanches should also disrupt their distributions. Use the timeShuffle
function to randomly shuffle the data by maintaining the same number of

7

events in each channel but randomizing when they occur in time. You can
use it like this:

[TIMERASTERshuf] = timeShuffle(TIMERASTER);

Temporal structure (jittering): Use the JitterRaster function to jitter the event
times by different amounts (e.g., sigma = 2000 bins, which would be 2 s if the
data are binned at 1 ms resolution). “sigma” is the standard deviation of a
normal distribution from which the jitter times are drawn. This is a milder form
of temporal shuffling when the choice of “sigma” is smaller than 2 s. You can
use the function like this:

[JRASTER] = JitterRaster(TIMERASTER, sigma);

Exercise: After using shuffling or jittering, now plot the disrupted avalanche
distributions (again using AvalancheAnalysis) and compare them to those
from the original data. What differences do you notice? Example plots are
shown below. Can you explain why these differences occur? What is the
largest value of “sigma” for which these plots still look about the same?

Another question: Can shuffled or jittered data that appears to be subcritical
somehow be “rescued” and made critical again? To try this, take a disrupted
data set (shuffled or jittered sufficiently) that has a downwardly curving
avalanche size distribution. Now re-bin it by some factor (e.g., 2, 4, 10, 20) to
see if this curve can be straightened out and made to look like a power law. Is
this successful? Why or why not? What are the implications of your results for
data interpretation?

G. Exponent relation: Another signature of being near the critical point is the
exponent relation (page 66). Here, we will attempt a very quick way to assess
if this is satisfied. We will explain a more rigorous and time-consuming way
later. For this quick check, we will transform the original avalanche
distributions into a format where they show less variability; this will allow us to

8

discern regions for power law fitting more clearly. To make this
transformation, we will construct complementary cumulative distribution
functions (CCDFs) for each original distribution. Briefly, the CCDF is based on
the cumulative sum of the distribution up to each value of x. This cumulative
sum smooths out the bumpiness that is apparent in the original distributions.
In this way, it reduces the variability. Here is an example of what it looks like:

If we obtain the CCDFs for both avalanche size and duration distributions, it
allows us to select domains where they appear to have approximately
straight-line regions.

Use the function GetCCDFs to obtain CCDFs for both avalanche size and
duration distributions:

[CCS, CCD] = GetCCDFs(sizeDist, durationDist);

9

Once you have these, discern a straight-line region from the CCDF plots, if
there is one. This will allow you to pick a lower limit and an upper limit over
which power law fittings will be attempted. For the examples shown in the
figure above, it looks like the limits for the size distribution would be [100,
101.6] = [1, 40]; for the duration distribution they would be [100, 101.4] = [1, 25].
Therefore, the domain over which we could expect scaling to apply would to
both distributions would be the intersection of these two, from 1 to 25.

To see if the exponent relation can now be fit, use the function
ExponentRelation like this (providing as inputs the variables you obtained
earlier: CCS, CCD, SvsT):

[alpha, tau, gamma_est, gamma_act, error] = ExponentRelation(CCS, CCD, SvsT, LimL, LimU);

Where “LimL” is the lower limit and “LimU” is the upper limit. The function will
plot linear fits to the CCDFs over this domain and will return the estimated
exponents “alpha,” “tau,” “gamma_est” (gamma estimated from the exponent
relation), and “gamma_act” (gamma estimated from the size vs duration plot).

You can tell by looking at the plots if the linear fits are reasonable or not. For
example, in the first figure below they are reasonable, while in the second
they are not. The fit quality can be quantified by reading the norm of the
residuals given by the least squares fit, which the function puts out for each
fit. For the fits in the first figure below, these values are 0.106, 0.026, 0.031,
all of which are acceptably low. When they are larger, the fits are poor, as
shown in the second figure below. This should also be evident by looking at
them. In that case, you should consider another region of the CCDF curve for
fitting. Alternatively, the data may need to be re-binned. If this does not
improve the fit, the data are perhaps not nearly critical; not all data sets are.

10

Finally, ExponentRelation will return another value, called “error” as a
measure of how close “gamma_act” and “gamma_est” are to each other. An
accepted value in the literature is for the “error” ≤ 0.20 (Ma et al., 2019). This
is a measure of how well the exponent relation is satisfied.

Exercise: Using the exponents “alpha” and “tau,” plot 10 data sets on the
alpha, tau plane like what is shown in the book (Figures 3.15, 5.3). Do they lie
along a line whose slope matches that given by “gamma_act?” What happens
to these exponents if the data that produced them is shuffled or jittered? Plot

11

“alpha” and “tau” for the same data set after increasing amounts of jitter (say,
“sigma” = 10, 100, 1000, 10000).

H. Avalanche shape collapse is another indication that a system is operating
near the critical point. Using the function ShapeCollapse, perform avalanche
shape collapse on the data you examined previously.

[Shapes] = ShapeCollapse(Events, LimL, LimU, interval, gamma_act);

Here, the data structure Events was previously produced by
AvalancheAnalysis, and interval is just a variable that allows you to plot
every other avalanche if it equals 2, or every avalanche if it equals 1.
Sometimes the plots get too dense if all avalanche shapes are included.

Exercise: Find several Organotypic data sets that show good collapse. Next,
jitter these data sets by increasing amounts (try “sigma” = 2, 5, 10, 20, 50,
100 ms). At what value of jitter does the collapse typically fall apart? For
comparison, note also how the avalanche distributions look after jittering by
these amounts. Which signature of criticality is the most fragile to jittering:
Power laws? Exponent relation? Shape collapse? Explain why you think this
is the case.

I. A tunable branching model: The book uses the simple branching model to
illustrate many of the concepts surrounding criticality in neural networks. In
fact, the first half of Chapter 3 is devoted to showing how this tunable model

12

can show multiple signatures of criticality. The second half of the chapter is
devoted to seeing if these signatures are present in the experimental data. In
these exercises, things are run in reverse. Now that you have explored
signatures of criticality in the data, you will see if you can produce these
signatures when a simple model is appropriately tuned. The function for
simulating the branching process is called BranchingModel. It takes as inputs
the number of timesteps the simulation is to be run (“timesteps”), the rows
(“r”) and columns (“c”) of the sheet of neurons to be simulated (r × c = number
of neurons), the probability of each neuron spontaneously firing (“p”), the
refractory period of each neuron after firing (“refperiod”), the number of
connections each neuron is to have (“connects”), the constructed branching
ratio for the network (“BR”), as well as the exponent by which the network
transmission probabilities will decay when they are listed in descending order
(“beta”). Sample values are shown below.

 [TIMERASTER] = BranchingModel(timesteps, r, c, p, refperiod, connects, BR, beta);

 [TIMERASTER] = BranchingModel(1000000, 12, 12, 0.0001, 10, 10, 1.0, 0.5);

Running the model for 1 million time steps, as suggested here, took about 20
seconds on my laptop (Intel Core i7-8750H CPU @ 2.20 GHz, 16 GB Ram,
64 bit operating system, x64-based processor). While more time steps and
more neurons produce better statistics, you should explore what run times are
reasonable for you, given your equipment.

Exercise: Plot avalanche distributions for the model as you sweep “BR” from
0.5 to 1.5 by increments of 0.1. If you save the data, you can perform multiple
analyses later (see next exercise). Report on the following: The quality of
linear fits to the avalanche distributions (if possible), the error in the exponent
relation (if possible), and the quality of avalanche shape collapse. Note that
we will examine finite size effects in the exercises for the next chapter.

For each value of “BR,” calculate the total number of active neurons from the
TIMERASTER output – you can get this by just taking the double sum of
timeraster: TotalNum = sum(sum(TIMERASTER)). Now plot the total number
of active neurons against “BR.” Does it look like the phase plot that was
produced by Exercise A in this chapter? Could it be similar, only reversed?

J. More rigorously examining criticality: The previous methods for fitting power
laws are rapid estimates, but there is a more exact and time-consuming way.
As mentioned in the book (page 180), there are several software packages
that do automated fitting to data to see if a power law distribution is more
likely than another distribution, like a lognormal. The script AutomatedFitting
will do this if the data is first put into a TIMERASTER format. This script is
only slightly modified from a script named demoempdata that was first
introduced with the analysis toolbox by (Marshall, Timme, et al., 2016). This

13

toolbox, NCCToolboxV1, should be loaded into your Matlab path so it can
provide the functions needed by AutomatedFitting. Note that this analysis
may take significantly longer and, in some cases, does not always converge.
However, it converged within a few minutes on my computer when I gave it
the output of BranchingModel described in the previous section (see the
figure below). Another useful toolbox for fitting power laws, though it does not
perform avalanche shape collapse, can be found in (Alstott, Bullmore and
Plenz, 2014).

Exercise: Use the AutomatedFitting script to process the “TIMERASTER” output
from BranchingModel as you sweep “BR” from 0.5 to 1.5 by increments of 0.1. For
what values of “BR” does there appear to be reasonable avalanche shape
collapse?

K. The empirically measured branching ratio, σ, is an indicator of proximity to the
critical point. In an ideal branching model, when σ=1, the network is exactly
critical.

Exercise: Use the function branchingEstimate (adapted from the methods
discovered by (Wilting and Priesemann, 2018)) to estimate the branching
ratio in a sample of the data sets (say, 20). Measure the branching ratio also
in corresponding shuffled data sets. Plot the distribution of branching ratios
obtained from actual data and shuffled data, similar to what is shown in
Figure 3.9 of the book. What differences do you notice? Is there any
relationship between the shape of the avalanche size distributions and the
estimated branching ratios? Is there any relationship between the estimated
branching ratios and the quality of the avalanche shape collapse?

14

Matlab code used for exercises in this chapter, listed in order of use:

BrunelNetworkFunctionTimeConstant
BrunelTimeConstantFinal
DemoScriptChapter3
ASDFToSparse
Dissociated2TIMERASTER
VisualizeRaster
spy2
AvalancheAnalysis
runStats
rebinRaster
branchingEstimate
timeShuffle
JitterRaster
GetCCDFs
ExponentRelation
ShapeCollapse
BranchingModel
AutomatedFitting
TIMERASTER_to_asdf2
NCCToolboxV1 (a toolbox containing many functions needed for
AutomatedFitting)

