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Exercises for Chapter 2, Emergent Phenomena 
 
 

1. Short overview 
The impressive computational power of brains comes not primarily from isolated 
neurons, but from the emergent, collective interactions that they support. How do 
basic neuronal parameters affect simple collective interactions? The first Matlab 
script, NetworkModelCellularAutomaton, is designed to give an intuitive 
introduction to this area of research.  
 
The model is a simple cellular automaton, first introduced on pages 35 and 36 of 
the book. Here, each neuron is a threshold device and that can be either on (blue 
dot) or off (no color). The network is driven by spontaneous activity and can be 
given different types of connectivity. The output of the model will be (1) a brief 
video of activity, as if seen from a 21 x 21 microelectrode array (the movie will be 
replayed at a rate chosen by fps, the frames per second), (2) a raster view of 
spikes plotted against time, (3) a series of still frames taken from somewhere in 
the middle of the run, possibly showing an emergent pattern, (4) a plot of 
population activity (firing rate) against time. An example of these plots is given in 
the screenshot below. By changing the parameters of the network and seeing the 
output, you should quickly get an idea of how the dynamics are affected. As there 
are many parameter combinations, there is a large state space you can explore.  
 
 

 
 

 
2. The parameters 

The parameters occur in the first few lines of the program and can be seen in the 
screenshot below.  
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Neighbor (nearest neighbor coupling)– when this parameter has a one and not a zero, 
the neurons will be situated on a square lattice and a neuron will be connected only to 
other neurons that are within a fixed radius. That radius is given by mD (maximum 
distance), explained below. The density of these connections is controlled by cD 
(connection density), explained below. 
 
cD (connection density)– this parameter can vary from 0 to 1. In the case of Random 
coupling, this gives the fraction of all possible connections that will be actually used in 
the network. If the number is 1, then the network will have perfect all-to-all connectivity. 
If the number is 0.05, the network will have 5% of all possible connections. In the case 
of Neighbor coupling, this number will set the fraction of possible neighbor connections 
on the lattice. For example, if there are to be four neighboring neurons connected, but 
the Connection density is 0.75, then on average only three of these connections will be 
realized per neuron.  
 
mD (maximum distance) – this only applies when Neighbor coupling is used. This sets 
the radius, in lattice units, from each neuron where permissible connections will be 
made. For example, if the maximum distance is 1.0, then neurons to the North, South, 
East and West of the given neuron will be connected, as in the Ising model. If the 
Maximum distance is 1.42 (greater than √2), then the diagonal connections will be 
allowed also, so that the neuron will now be connected to eight of its neighbors.  
 
refperiod (refractory period)– this is the number of time steps the neuron must be silent 
after firing. It should have integer values only.  
 
Nthresh (neuron threshold) – this is the number of active inputs required to make a 
neuron fire.  
 
p (probability of spontaneous activation) – this is the probability that a neuron will 
become spontaneously active in a given time step.  
 
PlayScrambledMovie – If you want to see what the activity would look like if the nearest 
neighbors were scrambled, change this parameter from 0 to 1. It will plot results for an 
unscrambled network first, followed by those for a scrambled network.  
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timesteps – this is just the number of timesteps the simulation will run. 200 is a good 
number to start and will allow you to quickly glimpse activity types. Longer runs are 
possible for more careful investigation.  
 
r (rows in the sheet of neurons), c (columns in the sheet of neurons) – these parameters 
set the dimensions of the sheet of neurons in the simulation.  
 
fps – this is the number of frames per second in the movie when it is replayed. An fps = 
7 is a good pick to allow you to see events unfold.  

 
 

3. Different types of emergent phenomena 
 
To run the simulation, first download the programs and place them in your Matlab 
path. Once you have opened the program in the editor, just click on the Run 
button as seen in the screenshot below.  
 

 
 

 
To describe the parameters for other settings, we will use a vector:   
(Neighbor, cD, mD, refperiod, Nthresh, p). For these exercises, let us assume r = 
c = 21, so we have a 21 × 21 grid of neurons.  

 
 Here are some example activity patterns to get started: 

Square waves: (1, 1, 1.5, 5, 1, 0.001) 
Circular waves: (1, 0.95, 2.5, 2, 3, 0.01)  
Repeating patterns: (0, 0.1, any, 2, 5, 0.02) 
Complementary on-off patterns: (1, 0.7, 3, 1, 1, 0.01) 
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4. Exercises 

 
A. Set these parameters: (1, 1, 1.5, 7, 2, 0.015). Can you identify particle-like 

structures? What signatures do they leave on the raster? What happens 
when these structures collide? What parameter changes disrupt these 
particle-like structures?  
 

B. Set these parameters: (1, X, 2.5, 5, 1.5, 0.02). Start the connection density, X, 
at 0.2, and then increase it by increments of 0.05 until you reach 0.7. What is 
going on here? Why do you think this is happening? If there is a transition 
point, where would it be?  

 
C. Set these parameters: (0, 0.25, X ≥ 6, 4, 7, 0.02). How would you describe 

the frequency of this activity? What parameter(s) most affects the frequency?  
 
D. Set these parameters: (0, 0.1, 4, 2, 5, 0.02). In what sense could this network 

be described as having an “attractor?” What might this attractor be useful for?  
 
E. Set these parameters: (1, 1, 3, 5, 4, 0.02). Watch the movie and inspect the 

raster. What collective excitation did you see? Now set PlayScrambledMovie 
= 1 and watch the movie in scrambled form and examine the raster. How is 
the pattern you observe now different? How might this be similar to our 
observations of neuronal activity, where connected neurons are not 
necessarily nearest neighbors? Under sparse random connectivity, how could 
you observe collective excitations in the brain if they were actually there? 

 
F. What is the primary difference between random and neighbor activity, in 

terms of the collective excitations that can be set up? As an example, set 
these parameters: (1, 1, 1.5, 7, 2, 0.015). Now switch it to random coupling by 
with an approximately equivalent density (0, 0.8, 1.5, 7, 2, 0.015). What do 
you see? Which situation is more like that found in the neocortex? 
 
Included in this chapter are two programs named CollectiveExcitationsGUI.m 
and CollectiveExcitationsGUI.fig (one is the computer code to simulate the 
cellular automaton and the other runs the figure). They are basically the same 
as NetworkModelCellularAutomaton, except they have a graphical user 
interface. This means they have buttons and boxes for you to type variables 
into. See the figure below. To use this interface, just type 
CollectiveExcitationsGUI into the Matlab command line.  
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G. Based on these exercises, how would you define an “emergent 

phenomenon?” How is an emergent phenomenon different from random 
activity in a network? What are the defining features of an emergent 
phenomenon? Is a threshold necessary for emergent phenomena? 
 

H. The book mentions Conway’s “Game of Life” on pages 43 – 45 as a cellular 
automaton rule that has been extensively studied because it produces diverse 
emergent phenomena (see here for more: 
https://conwaylife.com/wiki/Conway%27s_Game_of_Life ). The script 
ConwaysGOL allows you to simulate Conway’s Game of Life in a manner 
similar to the script above, generating the same type of plots. The script runs 
on a larger, 41 × 41 grid. Note that you can control the initial conditions to 
create different “creatures” from the menagerie (see lines 43 – 52). Try these 
different initial conditions to get a sense of what can happen.  
 

I. Note that Conway’s rule for the Game of Life is only one of 218 possible rules 
for a two-dimensional cellular automaton with a neighborhood of eight nearest 
neighbors that can be either on or off. To see what would happen if a rule 
were picked at random, run ModifiedLifeFunction, as shown here: 
 
[RuleUsed] = ModifiedLifeFunction(len, frames, rule); 
 
[RuleUsed] = ModifiedLifeFunction(100, 100, 0);  
 
Where “len” is the edge length of the array in which it will be run, “frames” is 
the number of steps in the simulation (and frames in the movie it produces), 
and “rule” is the type of rule you want to run. If rule = 0, it will randomly select 

https://conwaylife.com/wiki/Conway%27s_Game_of_Life
https://conwaylife.com/wiki/Conway%27s_Game_of_Life
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one of the possible rules and then quickly run a movie from a simple initial 
condition. If you don’t want to just randomly pick a rule, you can load one of 
the saved rules, as described below.   
 
Exercise: Run this script 100 times (it is quick) with rule = 0 and try to classify 
the different outputs that you see. What fraction of them appear to be 
“random?” What fraction of them appear to have some basic structure? What 
fraction of them produce something like what you see in the Game of Life 
(i.e., glider like structures that do not expand or contract)? Can you describe 
mechanistically what leads to blank patterns with no activity? What leads to 
random patterns? What leads to interesting patterns?  
 
Below are some examples of saved rules to give you an idea of the variety of 
activity patterns that we can see. To load one of these rules, just drag it (it 
should have a name that ends in “Rule”) from the folder into the Matlab 
workspace, like this:  
 

  
 
Then click “Finish” in the box that pops up: 
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Finally, you can run the function by just using the name of the rule, like this:  
 
[RuleUsed] = ModifiedLifeFunction(100, 300, AmazingRule); 
 
(Note that all the saved rules were generated with len = 100, and so will only 
work under that condition. However, the number of frames is not restricted). 
 
AmazingRule, when loaded and run, produces the very complex pattern 
shown below. It moves diagonally to the upper right and its components are 
also growing, then resetting. This is an example of a rule that leads to 
complex activity.  
 

 
 
TranslatingStaticPatternRule, shown below, produces the static pattern and 
glides to the upper right.  
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See also these rules: SimpleGliderRule, ExtinctionRule, ChaoticRule, 
StaticRule as examples of the types of activity the program can produce. 
 
If you find that a randomly selected rule produces interesting output and you 
want to save it, just take the output variable “RuleUsed” and assign it to a rule 
name, and then save that rule, like this:  
 
[RuleUsed] = ModifiedLifeFunction(100, 300, 0); 
NeatRule = RuleUsed; 
save NeatRule -mat 
 
Now you can go back and use “NeatRule” whenever you want.  
 
 

5. Project ideas (more difficult) 
 

J. Adapt the code that plots population activity over time (from 
NetworkModelCellularAutomaton) to characterize how each rule responds to 
a minor perturbation in inputs. You can proceed along these lines: First, 
create a random input configuration of active cells and then create a copy of 
it, with just N cells’ status changed (e.g., if the cells were on, turn them off and 
vice versa). Second, run the cellular automaton rule from both starting 
conditions. Store every frame of the temporal activity for both runs. Third, 
measure the “distance” between these runs by counting the number of cells 
that differ over time, starting with N cells differing at the start. Note that this 
distance could do one of three things: it could stay roughly the same, it could 
grow over time, it could shrink over time. Is there any relationship between 
the type of activity the rule produces (ordered, complex, disordered) and the 
way that the distance between outputs changes over time? For example, do 
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ordered rules tend to produce decreasing distance over time? Note: you may 
have to average over many input configurations before seeing a trend. See 
the appendix of the book for a description of the Lyapunov exponent.  
 

K. There is a 3-dimensional version of the Game of Life (try here: Leandro 
Barajas (2022). Conway's Game of Life in 3D 
(https://www.mathworks.com/matlabcentral/fileexchange/4892-conway-s-
game-of-life-in-3d ), MATLAB Central File Exchange. Retrieved July 5, 2022.) 
Modify this open source code so that it can run rules other than those of the 
Game Of Life, just as was done in two dimensions with the program 
ModifiedLifeFunction. Using your new program, survey about 100 randomly 
chosen rules. Again, try to classify the different outputs that you see. What 
fraction of them appear to be “random?” What fraction of them appear to have 
some basic structure? What fraction of them produce something like what you 
see in the 3D Game of Life? Can you describe mechanistically what leads to 
blank patterns with no activity? What leads to random patterns? What leads 
to interesting patterns? 
 

L. Chapter 2 in the book mentioned the topic of “downward causation,” noting 
that there is not a consensus about it in the scientific or philosophical 
communities. If you were to try to demonstrate that such a phenomenon 
exists, how would you do it? Could you devise a computational experiment, 
using programs like the ones mentioned here?  
 
 
 
 
Matlab code useful for exercises in this chapter, listed in order of use:  
 
NetworkModelCellularAutomaton 
ConwaysGOL 
ModifiedLifeFunction 
spy2b 
spy4 
Linear2Cartesian 
(The two programs below are graphical user interface, GUI, versions of the 
first program NetworkCellularAutomaton. To use these, just type 
CollectiveExcitationsGUI into the Matlab command window): 
CollectiveExcitationsGUI.fig    
CollectiveExcitationsGUI.m 
 
 
Cellular automaton rules:  
AmazingRule 
ChaoticRule 
ExtinctionRule 

https://www.mathworks.com/matlabcentral/fileexchange/4892-conway-s-game-of-life-in-3d
https://www.mathworks.com/matlabcentral/fileexchange/4892-conway-s-game-of-life-in-3d
https://www.mathworks.com/matlabcentral/fileexchange/4892-conway-s-game-of-life-in-3d
https://www.mathworks.com/matlabcentral/fileexchange/4892-conway-s-game-of-life-in-3d
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NeatRule 
SimpleGliderRule 
StaticRule 
TranslatingStaticPatternRule 
 
 


