
1

Exercises for Chapter 2, Emergent Phenomena

1. Short overview
The impressive computational power of brains comes not primarily from isolated
neurons, but from the emergent, collective interactions that they support. How do
basic neuronal parameters affect simple collective interactions? The first Matlab
script, NetworkModelCellularAutomaton, is designed to give an intuitive
introduction to this area of research.

The model is a simple cellular automaton, first introduced on pages 35 and 36 of
the book. Here, each neuron is a threshold device and that can be either on (blue
dot) or off (no color). The network is driven by spontaneous activity and can be
given different types of connectivity. The output of the model will be (1) a brief
video of activity, as if seen from a 21 x 21 microelectrode array (the movie will be
replayed at a rate chosen by fps, the frames per second), (2) a raster view of
spikes plotted against time, (3) a series of still frames taken from somewhere in
the middle of the run, possibly showing an emergent pattern, (4) a plot of
population activity (firing rate) against time. An example of these plots is given in
the screenshot below. By changing the parameters of the network and seeing the
output, you should quickly get an idea of how the dynamics are affected. As there
are many parameter combinations, there is a large state space you can explore.

2. The parameters

The parameters occur in the first few lines of the program and can be seen in the
screenshot below.

2

Neighbor (nearest neighbor coupling)– when this parameter has a one and not a zero,
the neurons will be situated on a square lattice and a neuron will be connected only to
other neurons that are within a fixed radius. That radius is given by mD (maximum
distance), explained below. The density of these connections is controlled by cD
(connection density), explained below.

cD (connection density)– this parameter can vary from 0 to 1. In the case of Random
coupling, this gives the fraction of all possible connections that will be actually used in
the network. If the number is 1, then the network will have perfect all-to-all connectivity.
If the number is 0.05, the network will have 5% of all possible connections. In the case
of Neighbor coupling, this number will set the fraction of possible neighbor connections
on the lattice. For example, if there are to be four neighboring neurons connected, but
the Connection density is 0.75, then on average only three of these connections will be
realized per neuron.

mD (maximum distance) – this only applies when Neighbor coupling is used. This sets
the radius, in lattice units, from each neuron where permissible connections will be
made. For example, if the maximum distance is 1.0, then neurons to the North, South,
East and West of the given neuron will be connected, as in the Ising model. If the
Maximum distance is 1.42 (greater than √2), then the diagonal connections will be
allowed also, so that the neuron will now be connected to eight of its neighbors.

refperiod (refractory period)– this is the number of time steps the neuron must be silent
after firing. It should have integer values only.

Nthresh (neuron threshold) – this is the number of active inputs required to make a
neuron fire.

p (probability of spontaneous activation) – this is the probability that a neuron will
become spontaneously active in a given time step.

PlayScrambledMovie – If you want to see what the activity would look like if the nearest
neighbors were scrambled, change this parameter from 0 to 1. It will plot results for an
unscrambled network first, followed by those for a scrambled network.

3

timesteps – this is just the number of timesteps the simulation will run. 200 is a good
number to start and will allow you to quickly glimpse activity types. Longer runs are
possible for more careful investigation.

r (rows in the sheet of neurons), c (columns in the sheet of neurons) – these parameters
set the dimensions of the sheet of neurons in the simulation.

fps – this is the number of frames per second in the movie when it is replayed. An fps =
7 is a good pick to allow you to see events unfold.

3. Different types of emergent phenomena

To run the simulation, first download the programs and place them in your Matlab
path. Once you have opened the program in the editor, just click on the Run
button as seen in the screenshot below.

To describe the parameters for other settings, we will use a vector:
(Neighbor, cD, mD, refperiod, Nthresh, p). For these exercises, let us assume r =
c = 21, so we have a 21 × 21 grid of neurons.

 Here are some example activity patterns to get started:

Square waves: (1, 1, 1.5, 5, 1, 0.001)
Circular waves: (1, 0.95, 2.5, 2, 3, 0.01)
Repeating patterns: (0, 0.1, any, 2, 5, 0.02)
Complementary on-off patterns: (1, 0.7, 3, 1, 1, 0.01)

4

4. Exercises

A. Set these parameters: (1, 1, 1.5, 7, 2, 0.015). Can you identify particle-like

structures? What signatures do they leave on the raster? What happens
when these structures collide? What parameter changes disrupt these
particle-like structures?

B. Set these parameters: (1, X, 2.5, 5, 1.5, 0.02). Start the connection density, X,
at 0.2, and then increase it by increments of 0.05 until you reach 0.7. What is
going on here? Why do you think this is happening? If there is a transition
point, where would it be?

C. Set these parameters: (0, 0.25, X ≥ 6, 4, 7, 0.02). How would you describe

the frequency of this activity? What parameter(s) most affects the frequency?

D. Set these parameters: (0, 0.1, 4, 2, 5, 0.02). In what sense could this network

be described as having an “attractor?” What might this attractor be useful for?

E. Set these parameters: (1, 1, 3, 5, 4, 0.02). Watch the movie and inspect the

raster. What collective excitation did you see? Now set PlayScrambledMovie
= 1 and watch the movie in scrambled form and examine the raster. How is
the pattern you observe now different? How might this be similar to our
observations of neuronal activity, where connected neurons are not
necessarily nearest neighbors? Under sparse random connectivity, how could
you observe collective excitations in the brain if they were actually there?

F. What is the primary difference between random and neighbor activity, in

terms of the collective excitations that can be set up? As an example, set
these parameters: (1, 1, 1.5, 7, 2, 0.015). Now switch it to random coupling by
with an approximately equivalent density (0, 0.8, 1.5, 7, 2, 0.015). What do
you see? Which situation is more like that found in the neocortex?

Included in this chapter are two programs named CollectiveExcitationsGUI.m
and CollectiveExcitationsGUI.fig (one is the computer code to simulate the
cellular automaton and the other runs the figure). They are basically the same
as NetworkModelCellularAutomaton, except they have a graphical user
interface. This means they have buttons and boxes for you to type variables
into. See the figure below. To use this interface, just type
CollectiveExcitationsGUI into the Matlab command line.

5

G. Based on these exercises, how would you define an “emergent

phenomenon?” How is an emergent phenomenon different from random
activity in a network? What are the defining features of an emergent
phenomenon? Is a threshold necessary for emergent phenomena?

H. The book mentions Conway’s “Game of Life” on pages 43 – 45 as a cellular
automaton rule that has been extensively studied because it produces diverse
emergent phenomena (see here for more:
https://conwaylife.com/wiki/Conway%27s_Game_of_Life). The script
ConwaysGOL allows you to simulate Conway’s Game of Life in a manner
similar to the script above, generating the same type of plots. The script runs
on a larger, 41 × 41 grid. Note that you can control the initial conditions to
create different “creatures” from the menagerie (see lines 43 – 52). Try these
different initial conditions to get a sense of what can happen.

I. Note that Conway’s rule for the Game of Life is only one of 218 possible rules
for a two-dimensional cellular automaton with a neighborhood of eight nearest
neighbors that can be either on or off. To see what would happen if a rule
were picked at random, run ModifiedLifeFunction, as shown here:

[RuleUsed] = ModifiedLifeFunction(len, frames, rule);

[RuleUsed] = ModifiedLifeFunction(100, 100, 0);

Where “len” is the edge length of the array in which it will be run, “frames” is
the number of steps in the simulation (and frames in the movie it produces),
and “rule” is the type of rule you want to run. If rule = 0, it will randomly select

https://conwaylife.com/wiki/Conway%27s_Game_of_Life
https://conwaylife.com/wiki/Conway%27s_Game_of_Life

6

one of the possible rules and then quickly run a movie from a simple initial
condition. If you don’t want to just randomly pick a rule, you can load one of
the saved rules, as described below.

Exercise: Run this script 100 times (it is quick) with rule = 0 and try to classify
the different outputs that you see. What fraction of them appear to be
“random?” What fraction of them appear to have some basic structure? What
fraction of them produce something like what you see in the Game of Life
(i.e., glider like structures that do not expand or contract)? Can you describe
mechanistically what leads to blank patterns with no activity? What leads to
random patterns? What leads to interesting patterns?

Below are some examples of saved rules to give you an idea of the variety of
activity patterns that we can see. To load one of these rules, just drag it (it
should have a name that ends in “Rule”) from the folder into the Matlab
workspace, like this:

Then click “Finish” in the box that pops up:

7

Finally, you can run the function by just using the name of the rule, like this:

[RuleUsed] = ModifiedLifeFunction(100, 300, AmazingRule);

(Note that all the saved rules were generated with len = 100, and so will only
work under that condition. However, the number of frames is not restricted).

AmazingRule, when loaded and run, produces the very complex pattern
shown below. It moves diagonally to the upper right and its components are
also growing, then resetting. This is an example of a rule that leads to
complex activity.

TranslatingStaticPatternRule, shown below, produces the static pattern and
glides to the upper right.

8

See also these rules: SimpleGliderRule, ExtinctionRule, ChaoticRule,
StaticRule as examples of the types of activity the program can produce.

If you find that a randomly selected rule produces interesting output and you
want to save it, just take the output variable “RuleUsed” and assign it to a rule
name, and then save that rule, like this:

[RuleUsed] = ModifiedLifeFunction(100, 300, 0);
NeatRule = RuleUsed;
save NeatRule -mat

Now you can go back and use “NeatRule” whenever you want.

5. Project ideas (more difficult)

J. Adapt the code that plots population activity over time (from
NetworkModelCellularAutomaton) to characterize how each rule responds to
a minor perturbation in inputs. You can proceed along these lines: First,
create a random input configuration of active cells and then create a copy of
it, with just N cells’ status changed (e.g., if the cells were on, turn them off and
vice versa). Second, run the cellular automaton rule from both starting
conditions. Store every frame of the temporal activity for both runs. Third,
measure the “distance” between these runs by counting the number of cells
that differ over time, starting with N cells differing at the start. Note that this
distance could do one of three things: it could stay roughly the same, it could
grow over time, it could shrink over time. Is there any relationship between
the type of activity the rule produces (ordered, complex, disordered) and the
way that the distance between outputs changes over time? For example, do

9

ordered rules tend to produce decreasing distance over time? Note: you may
have to average over many input configurations before seeing a trend. See
the appendix of the book for a description of the Lyapunov exponent.

K. There is a 3-dimensional version of the Game of Life (try here: Leandro
Barajas (2022). Conway's Game of Life in 3D
(https://www.mathworks.com/matlabcentral/fileexchange/4892-conway-s-
game-of-life-in-3d), MATLAB Central File Exchange. Retrieved July 5, 2022.)
Modify this open source code so that it can run rules other than those of the
Game Of Life, just as was done in two dimensions with the program
ModifiedLifeFunction. Using your new program, survey about 100 randomly
chosen rules. Again, try to classify the different outputs that you see. What
fraction of them appear to be “random?” What fraction of them appear to have
some basic structure? What fraction of them produce something like what you
see in the 3D Game of Life? Can you describe mechanistically what leads to
blank patterns with no activity? What leads to random patterns? What leads
to interesting patterns?

L. Chapter 2 in the book mentioned the topic of “downward causation,” noting
that there is not a consensus about it in the scientific or philosophical
communities. If you were to try to demonstrate that such a phenomenon
exists, how would you do it? Could you devise a computational experiment,
using programs like the ones mentioned here?

Matlab code useful for exercises in this chapter, listed in order of use:

NetworkModelCellularAutomaton
ConwaysGOL
ModifiedLifeFunction
spy2b
spy4
Linear2Cartesian
(The two programs below are graphical user interface, GUI, versions of the
first program NetworkCellularAutomaton. To use these, just type
CollectiveExcitationsGUI into the Matlab command window):
CollectiveExcitationsGUI.fig
CollectiveExcitationsGUI.m

Cellular automaton rules:
AmazingRule
ChaoticRule
ExtinctionRule

https://www.mathworks.com/matlabcentral/fileexchange/4892-conway-s-game-of-life-in-3d
https://www.mathworks.com/matlabcentral/fileexchange/4892-conway-s-game-of-life-in-3d
https://www.mathworks.com/matlabcentral/fileexchange/4892-conway-s-game-of-life-in-3d
https://www.mathworks.com/matlabcentral/fileexchange/4892-conway-s-game-of-life-in-3d

10

NeatRule
SimpleGliderRule
StaticRule
TranslatingStaticPatternRule

