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Exercises for Chapter 5, Universality 
 

 
The main message of Chapter 5 is that systems near the critical point have higher-level 
universal features that do not depend on some lower-level details. Recall that besides 
optimality (Chapter 4), universality (Chapter 5) is the second main consequence of 
criticality.  
 
To illustrate universality, the book describes how the Ising model of magnetism has the 
same critical behavior whether it is implemented on a square lattice or on a triangular 
lattice (pages 95-97). In these exercises, we will investigate this claim of universality 
through simulations of the Ising model on both types of lattice. We will see if the models 
can show similar macroscopic behavior at the critical point despite differences in the 
microscopic details of their lattices.  
 
These exercises will be organized in stages. First, we will use simulations of the square-
lattice Ising model to take an intuitive look at how it behaves under three different 
temperatures (low, critical, high). Second, we will use these movies to crudely estimate 
the critical temperature. Third, we will look at spatial correlations in the square-lattice 
model, seeing if long-range correlations emerge at the critical point. Fourth, we will plot 
the energy and the specific heat as a function of temperature. These functions will allow 
us to see the phase transition and more accurately estimate the critical temperature of 
the model. Fifth, we will repeat these exercises with the triangular-lattice model. We 
expect to find that the decay of covariance with distance at the critical point will be the 
same despite the lattice differences. This will lead to similar critical exponents for both 
models. Sixth, we will explain the energy equation and the Metropolis algorithm of the 
Ising model for those who want slightly more details.  
 
 
 
1. An intuitive look at the Ising model (square-lattice) 
 
The Ising model of magnetism in a piece of iron is explained in the book on pages 95-
97. Here, I will briefly go over some of its features so the reader can get intuition about 
how it behaves.  
 
The setup: The Ising model consists of a square lattice with a spin at every lattice site 
(see figure below). Each spin is like a tiny bar magnet that can point either up or down. 
For the square lattice, a spin at a given lattice site is connected to four of its nearest 
neighbors located in positions North, South, East and West of it. The connections 
between lattice sites cause the spins to tend to align with each other; if the central spin 
is pointing up, it will favor each of its nearest neighbors pointing up also. Likewise, if it is 
pointing down it will influence its neighbors to point down. We can add heat to the model 
by raising the temperature; this causes it to change phases as we will now explain.  
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The three regimes: When the temperature is low, the nearest neighbor interactions 
dominate, and all the spins point in the same direction. Since the spins are like tiny bar 
magnets all pointing in the same direction, they add together, and the sample has a net 
magnetization. If this is a cool piece of iron, it will stick nicely to your steel refrigerator 
door. This is the ordered phase and can be considered subcritical.  
 

 
 
When the temperature is raised a bit, this adds thermal energy to the system. You can 
think of this as jostling the spins around so that they are not all aligned anymore. Some 
of them will point in directions opposite to those of their nearest neighbors. The thermal 
energy disrupts the order we saw previously. If we are at the critical temperature, then 
there is a perfect balance between the order caused by the nearest neighbor 
interactions and the disorder caused by the thermal energy. There will be a mixture of 
local order and global variety, leading to complex structures. Our small sample of iron 
now has considerably less net magnetization and it will no longer stick to the refrigerator 
door. This is the phase transition region and can be considered critical.  
 
When the temperature is raised yet more, thermal energy dominates. While the nearest 
neighbor interactions are still there, they are overwhelmed by the thermal jostling and it 
is very difficult to find a sizeable domain of several spins pointing in the same direction. 
Rather, it seems that each spin is just randomly pointing either up or down. Moreover, 
the spins are constantly flipping in time. This is the disordered phase and can be 
considered supercritical.  
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2. Watching movies and finding the critical temperature for the square lattice 
 
To get a better idea of each of these regimes, it helps to watch movies of how the Ising 
model moves toward equilibrium. In these movies, a spin pointed up will be represented 
by a black pixel; one pointed down will be white.  
 

 
 
For each movie, we will simulate the lattice from an initially disordered starting position. 
Next, a single lattice site will be chosen at random. The spin will then be flipped. If it 
lowers the energy of the overall system, then the spin flip will be retained (it can lower 
the energy by pointing in the same direction as its nearest neighbors, if it was pointing in 
the opposite direction previously). If it raises the energy of the system, the spin flip will 
be discarded, unless the temperature is high (we will explain this in more detail, with 
math, in the next section). In general, this means that when the model is at low 
temperatures it will converge toward an ordered state and when it is at higher 
temperatures it will remain a disordered state.  
 
A. Exercise: To view a movie of the model converging to an ordered state, use the 
IsingSquare function as follows:  
 
T = 0.05;  
r = 20;  
timesteps = 200000;  
IsingSquare(T, r, timesteps);  
 
This will simulate an Ising model on a 20 by 20 square lattice at a low temperature of 
0.05 for 200,000 time steps. It should take only about 1-2 minutes and then the movie 
will play. You will see the movie start out with a random configuration of spins, about 
half pointing up and half pointing down. This will rather quickly converge to a state 
where all the pixels are either white (pointing down) or black (pointing up). This is a 
representative low temperature, ordered phase. Note that sometimes at low 
temperatures the system can settle into a “stripe” where half the sites are pointed up 
and half the sites are pointed down. While this is lower energy than the random 
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configuration, it is not the lowest energy. In a small simulation like this, such a local 
minimum (as opposed to a global minimum) occasionally happen.  
 
Next, run the function again, but this time try a much higher temperature:  
 
T = 8.00;  
r = 20;  
timesteps = 200000;  
IsingSquare(T, r, timesteps);  
 
Here you should see it remain flickering in a disordered state.  
 
Finally, try to find the critical temperature (T to the nearest quarter of an integer; search 
between 0 to 8) by looking for a movie that is neither highly ordered nor completely 
disordered. Near Tcrit, you should see blobs of many sizes on the screen, slowly moving 
about, extending tendrils and breaking them off to form new blobs. This should appear 
somewhat life-like near the critical temperature, with blobs appearing like amoeba under 
a microscope. The figures below can give you a hint of what to look for.  
 

 
 
For the square Ising model on a 20 by 20 lattice, what does the critical temperature 
seem to be, based on your assessment of a life-like movie?  
 
 
3. The covariance length at different temperatures for the square lattice 
 
You may have also noticed that the program IsingSquare produces a second plot in 
addition to the movie. This second plot shows the covariance between lattice sites as a 
function of distance. Two such covariance plots are shown in the figure below.  
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B. Exercise: Compare the covariance plots at the low, high and nearly critical 
temperatures you used earlier. Which has the slowest decline in covariance with 
distance? 
 
Interestingly, this extension of the covariance is a simple signature of emergence. In the 
model, we have only built in nearest neighbor connections. If that were all that mattered, 
then we should not see covariance between lattice sites that are not directly connected 
to each other. Yet we do see this near the critical temperature. This means that events 
or structures emerge in the lattice that have a scale larger than the length of the nearest 
neighbor connections. Lattice sites that are very far away from each other can still be 
statistically related when the system is tuned to be near the critical point.  
 
So far, we are only looking for approximate agreement between our plots and the critical 
temperature. Next, we will try to be more precise.  
 
 
4. Determining the critical temperature, Tcrit, for the square lattice 
 
To more accurately determine Tcrit, we will now systematically sweep through the 
temperatures and identify where phase transition occurs.  
 
Run the short script IsingLoopSquare shown below:  
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%This section generates several files.  
tic;  
timesteps = 50000; %you can increase the timesteps to get more accurate results, but 
it will take longer 
r = 10;            %you can increase the dimensions of the lattice for more accuracy, 
but this will also take longer 
numRuns = 20; 
increment = 0.25;  %you may want to use a smaller increment when you are probing the 
critical temperature in more detail 
for i=1:numRuns 
    i 
    TeeVals(i) = (increment * i); 
    IsingSquare(TeeVals(i), r, timesteps); 
end 
toc 
 
 
Note that it sweeps the temperature from 0.25 to 5.00 in steps of 0.25. Thus, twenty 
different temperatures will be tried, resulting in a movie and a covariance plot for each. 
You can examine all the covariance plots to try to see which ones fall off most gradually.  
 
But how can we find the Tcrit more accurately from this sweep?  Recall that near the 
phase transition point, there should be functions of the system that show sharp peaks. 
This is illustrated frequently in Chapter 4, where the information transmission (Figures 
4.4, 4.9), dynamic range (Figures 4.6, 4.8) and susceptibility (Figures 4.5, 4.10) show 
peaks near the critical point. With the Ising model, there are analogous functions we can 
look at. For example, the susceptibility of the Ising model is related to how many spins 
will flip in response to flipping a single spin. The susceptibility peaks near the critical 
point 
 
In addition, there is something called the specific heat. This is the change in the energy 
for a given change in temperature. Like the susceptibility, this is largest right near the 
critical point. Specific heat peaks near the critical point.  
 
Another signature of the phase transition is that the order parameter changes at the 
boundary between phases. For the branching model, the order parameter is the density 
of active sites, or just the fraction of nodes that are on, which can range from 0 to 1 
(Figures 3.3, 4.5). The density of active sites shows a transition near the critical point. 
 
For the Ising model, the order parameter is closely related to this, and is just the 
magnetization, M. For our purposes, the magnetization is just the sum of all the spins, 
divided by the total number of spins. Recall that each spin can be either up (+1) or down 
(-1). If all the spins are pointed up, then they will sum together to produce a positive 
number close to 1 (when normalized by dividing by the total number of spins). At low 
temperatures we should expect M to be high, while at high temperatures it should drop 
to nearly zero. Note that it will be equally likely for all the spins to point down; for clarity 
we avoid looking at this by just taking the absolute value. Magnetization shows a 
transition near the critical point. 
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Finally, we can look at the energy of the Ising model. This will be lowest when all the 
spins are pointing in the same direction because the nearest neighbor connections are 
in harmony with the arrangement of spins. The energy will be highest when the spins 
are pointing in different directions and about half of the nearest neighbor connections 
will not be in harmony. Energy shows a transition near the critical point. 
 
We therefore have several functions we can use to more carefully identify the critical 
point: (1) the susceptibility (peaks), (2) the specific heat (peaks), (3) the magnetization 
(transitions), and (4) the energy (transitions). To make plots of these variables as a 
function of temperature, run the script IsingLoopSquare and wait until it finishes. After 
that, run the script IsingPlotterSquare which will produce four plots of the variables. 
Without giving away the critical temperature, you should see something roughly like 
these:  
 

 
 
Running both programs will probably take 5 minutes or more on a moderately good 
laptop (mine has an Intel Core i7-8750H CPU @ 2.20GHz processor with about 16 GB 
of RAM). To get a more accurate estimate of the critical temperature for this model, you 
can run larger lattices (100 by 100) for longer times (e.g., 2,000,000 timesteps). This will 
of course take more time and can be done with finer precision by making the variable 
increment in IsingLoopSquare as small as 0.1 and running only near the region 
where you suspect the transition occurs.  
 
C. Exercise: With this information in hand, what is your best estimate of Tcrit for the Ising 
model on a square lattice? Show plots to justify your answer.  
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5. The Ising model on the triangular lattice: Tcrit and the covariance length 
 
As mentioned in the book, the Ising model can also be run on a triangular lattice. How 
can we think of this in relation to the square lattice? The figure below shows how we 
can transform the square lattice into a triangular lattice by adding a few connections and 
tilting the lattice.  

  

 
 
In the triangular lattice, each site has six nearest neighbors now instead of four. We 
might expect that this would change Tcrit. The reasoning goes as follows: the critical 
temperature is just the point where the thermal energy (promoting disorder) is exactly 
balanced by the nearest neighbor energy (promoting order). In the square lattice, the 
thermal energy is fighting against four connections per spin, while in the triangular 
lattice it is fighting against six connections per spin.  
 
D. Exercise: Based on this, what do you predict the new Tcrit will be?  
 
To see if your guess is close to correct, run the script IsingLoopTriangle followed by 
IsingPlotterTriangle. The numbers currently loaded will set up a simulation with a 
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10 by 10 lattice, running for 50,000 time steps. As before, this rough and quick 
calculation can give you an approximate idea of where Tcrit lies. For more accuracy, run 
larger lattices for longer times, just as you did with the square lattice.  
 
As you might have guessed by now, the square lattice and the triangular lattice do not 
have the same critical temperatures. So, this means that the microscopic details can 
affect the behavior, right? Yes, they can. But universality has a claim that is slightly 
different than this – it argues that the emergent behaviors of both lattices should be the 
same when they are both near the critical point. This means for example that the decay 
of the covariance functions should look similar when each lattice is at its respective 
critical temperature.  
 
E. Exercise: To test this claim, run larger versions of both the square lattice and the 
triangular lattice models for longer times and compare their covariance plots. If you 
make the axes logarithmic for both scales, you should see something approaching a 
power law in both plots (see the figure below; at the end of this section there is a series 
of figures showing you how to change to logarithmic axes in Matlab). Are the slopes the 
same within some margin of error? Show plots for both lattices in logarithmic scales and 
estimate their slopes (exponents). A sample of something like what you should get is 
shown below.  
 

 
Covariance length is maximized at the critical point. A, Covariance plotted against distance 
between spins for three Ising model regimes. Covariance has the longest range when the model is 
near the critical temperature. B, Covariance from the critical temperature plotted in log log 
coordinates, showing a long-tailed distribution that would approach a power law for larger 
simulation sizes (shown for a square lattice of 100 x 100 spins.)  
 
 
 
Note that the variable CenteredAR contains the covariance values and is saved with 
each file after an Ising model is run with a particular set of parameters. To make 
covariance plots, you can paste the code below into the Matlab command line:  
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if mod(r, 2) == 0 
figure; plot([-(floor(r/2)):1:(floor(r/2)-1)], CenteredAR); ylabel('Covariance', 'FontSize', 15); 
xlabel('Distance, lattice sites', 'FontSize', 15); ylim([-0.5 1]); title('T =', T); 

else 
figure; plot([-(floor(r/2)+1):1:(floor(r/2)-1)], CenteredAR); ylabel('Covariance', 'FontSize', 15); 
xlabel('Distance, lattice sites', 'FontSize', 15); ylim([-0.5 1]); title('T =', T); 

end 

 
You can then transform the axes from linear to logarithmic scales by using the steps 
given at the end of this document. Doing this should help you to create plots like those 
shown in figures A and B above.  
 
 
6. The square lattice Ising model explained in slightly more detail 
 
This section is somewhat redundant but will introduce the energy equation and the 
Metropolis algorithm that underlie the model.  
 
The energy equation. As we stated earlier, the Ising model is composed of a set of 
spins, each acting like a tiny bar magnet, that can point either up or down. These spins 
populate a regular square lattice, as shown in the figure below. Each spin is connected 
only to its nearest neighbors in the North, South, East and West lattice sites.  
 

 
The Ising model energy. Upper row shows regular 3 × 3 square lattices with spins (arrows) occupying 
each square. The spins may point either up or down; energy is subtracted for same orientation spins and 
added for different orientation spins. Temperature increases from left to right, producing increasing levels 
of disorder. Middle row highlights the spin from the center of the lattice and the connections to its 
nearest-neighbor spins. Black connections indicate spin pairs with similar directions, gray connections 
indicate spins pairs with opposing directions. Lower row shows energy calculations just for the central 
spin and its nearest neighbors. Each black (same orientation) connection contributes -1 unit, each gray 
(different orientation) connection contributes +1 unit. Highly ordered states have low energy, disordered 
states have high energy.  
 
 
When two connected spins point in the same direction, they have negative energy. 
Since systems tend to flow toward low energy states, this configuration will be favored. 
In contrast, when two connected spins point in opposite directions, they have positive 

Energy = -1 -1 -1 -1 = - 4

Low temperature Critical temperature High temperature

Energy = -1 -1  = 0 Energy =   -1  = +2



11 
 

energy; this will not be favored by the system. From this, we can see that the nearest 
neighbor connections will tend to make the spins all align in the same direction, as this 
will be the lowest energy state. For the entire population of spins, we can calculate the 
energy, E, from this simple equation which is just the sum of the energies of all the 
connected spin pairs:   
  

𝐸𝐸 = �−𝐽𝐽𝑖𝑖,𝑗𝑗𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗
𝑖𝑖≠𝑗𝑗

 

 
Here, -Jij is the connection strength between spin i and spin j. Note that -Jij will always 
be negative one in the Ising model. Here, σi  and σj  are the orientations of spins i and j, 
respectively, and can be either (+1, up) or (-1, down). The sum is taken over all nearest 
neighbor pairs in the model and does not allow any spin to interact with itself (hence the 
restriction i ≠ j). As we will see next, the model will evolve from an initially random 
configuration toward lower, more negative, energy configurations as it moves toward 
equilibrium.   
 
The Metropolis algorithm. Let us first consider what will happen if we start from a 
random configuration where about half the spins are pointed up and half are pointed 
down. To simulate the evolution of the model toward the equilibrium state when the 
temperature is zero, we follow a simple procedure. First, randomly select a spin and 
provisionally flip it. Second, calculate the change in energy that would occur if that spin 
flip were retained. Third, if the spin flip lowers the energy, then accept it. If the spin flip 
raises the energy, then discard it. If this procedure is repeated many times, the model 
will move toward equilibrium. In this case, the energy will be maximally negative, and 
the spins will become completely aligned, pointing either all up or all down. This is the 
highly ordered state where nearest neighbor connections dominate. Notice that from an 
initially random configuration, it has a 50% chance of evolving toward an all up or an all 
down configuration.  
 
What will happen if we now add thermal energy to the model? We can do this by raising 
the temperature, T, above zero. Thermal energy will jostle the spins, causing some of 
them to randomly flip in directions opposed to their neighbors. In this situation, there will 
be a competition of sorts between the nearest neighbor connections, promoting order, 
and the thermal energy, promoting disorder. We will indicate the amount of thermal 
energy by the temperature, T.  
 
Now that we have thermal energy, our procedure for simulating the evolution of the 
model toward an equilibrium state will have to be slightly altered. First, as before, 
randomly select a spin and provisionally flip it. Second, calculate the change in energy 
that would occur if that spin flip were retained. Third, if the spin flip lowers the energy, 
then accept it. But if the spin flip raises the energy, accept it with some probability that 
depends on T. When T is high, this probability is high; when T is low, it is lower. Repeat 
this process until the energy of the model does not change. More specifically, the 
probability P of accepting a spin flip (that raises energy) at temperature T is given by 
𝑃𝑃 =  𝑒𝑒−

∆𝐸𝐸
𝑘𝑘𝑘𝑘. Here ∆E is the change in energy caused by the spin flip and k is Boltzmann’s 
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constant (which in our simulation is just set to 1 for ease of calculation). Notice that as T 
increases, P increases also. At high T, spin flips that raise the energy are more likely. 
Also, when T = 0, P = 0. 
 
This procedure for flipping the spins in the Ising model is called the Metropolis algorithm 
and is implemented in the Matlab codes. More generally, it is a type of Monte Carlo 
approach that relies on randomness. A more detailed discussion of the Metropolis 
algorithm and Monte Carlo methods can be found in (Elements of Phase Transitions 
and Critical Phenomena, by Nishimori and Ortiz, 2011). 
 
 
 
 
 
 
 
 
 
 
 
 
 
How to change a Matlab figure from linear to logarithmic axes: 
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Matlab code used for exercises in this chapter, listed in order of use:  
 
IsingSquare 
IsingLoopSquare 
IsingPlotterSquare 
IsingTriangle 
IsingLoopTriangle 
IsingPlotterTriangle   


