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Exercises for Chapter 4, Optimality 
 
 

The theme of Chapter 4 is that many information processing functions will be optimized 
in neural networks when they operate near the critical point. Thus, functions like the 
susceptibility, the dynamic range, and the mutual information should show a peak near 
the critical point. Optimality and universality are the two main consequences of being 
nearly critical.  
 
Recall that the exercises in Chapter 1 were intuitive; now they will be more quantitative. 
We will be examining each of these functions and looking for peaks. More specifically, 
we will look at how the locations of those peaks move as the simulations are made 
larger or run longer. We will be interested in extrapolating to estimate the behavior of an 
infinitely large network, in what is called the “thermodynamic limit.” While doing a very 
thorough job of this would often take a supercomputer, it is possible to get glimmers of 
the thermodynamic limit even with a laptop. In doing so, we will be exploring the finite 
size effects discussed in pages 79-80 of the book.  
 
 

1. Susceptibility 
The sensitivity of a network to changes in input is roughly captured by the 
susceptibility, as explained in the book on pages 80-81. The prediction of the 
criticality hypothesis is that living neural networks will have a narrow peak in 
susceptibility near the critical point. This would optimize their ability to detect 
slight changes in inputs.  

 
First, let’s look at the variability of a network’s output to a constant input. We will 
use a branching model network with a feed-forward architecture. This network 
will have only one active neuron in the first layer, and the activity from that 
neuron may propagate into subsequent layers. We will stimulate the network 
many times, say 500, and on each occasion, we will take the activity in the last 
layer of the network as the output. We can create a TIMERASTER by 
concatenating all the 500 outputs into one matrix. To do this, use the 
FeedForwardBranchingModelFunction, like this:  
 
[TIMERASTER] = FeedForwardBranchingModelFunction(neurons, numStim, layers,… 
connects, BR, timesteps); 

 
To start, try these parameters: “neurons” = 100, “numStim” = 1, “layers” = 11, 
“connects” = 10, “BR” = 1.2, “timesteps” = 500:  
 
[TIMERASTER] = FeedForwardBranchingModelFunction(100, 1, 11, 10, 1.2, 500); 
 
Below is a screenshot of a TIMERASTER produced by this function, which you 
can plot if you just type this: 
 
figure; spy2(TIMERASTER);   
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It should be apparent that there is great variability in the output, even though the 
input was consistently just one neuron stimulated in the first layer. To get an idea 
of how the branching ratio impacts this variability, we can plot the sum of the 
columns in the TIMERASTER:  
 
figure; plot(sum(TIMERASTER)); ylim([0 100]); ylabel("activity"); 
xlabel("time step"); 

 
When you do that, you should see something like this:  
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A. Exercise: Input branching ratios from 1 to 5, in increments of 1, to 
FeedForwardBranchingModelFunction. Then plot each of the TIMRASTERs by 
using this line of code:  
 
figure; plot(sum(TIMERASTER)); ylim([0 100]); 
 
By inspection, can you tell the relationship between the branching ratio and the 
variability? Is it linear? In other words, does the variability of the output always 
increase as the branching ratio is increased? To be more quantitative, you can 
calculate the variance of the output with this function:  
 
[Chi] = SusceptibilityCalc(TIMERASTER) 
 
Here, the Greek letter Chi is the susceptibility. Now, to do this systematically we 
will use the SusceptibilityDemoFunction:    
 
[Chi, Rho, BR] = SusceptibilityDemoFunction(neurons, layers, connects, 
timesteps, numSamples); 
 
To start, try these parameters: “neurons” = 100, “layers” = 5, “connects” = 10, 
“timesteps” = 500, “numSamples” = 50: 
 
[Chi, Rho, BR] = SusceptibilityDemoFunction(100, 5, 10, 500, 50); 
 
This should take less than 5 minutes to run and will give you a plot that looks 
something like this: 
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Recall that the Greek letter Rho represents the density of sites, or the fraction of 
neurons that are active. Here we see a peak in the susceptibility at a branching 
ratio of about 3.3.  
 
B. Exercise: Gradually increase the number of layers in the network while holding 
other input parameters constant (e.g., try layers = 5 to 25 by increments of 5). 
Note the branching ratio at which the peak occurs for each network and then plot 
the peak branching ratio against the number of network layers. If possible, also 
record the width of the susceptibility curve at half its amplitude. In a separate 
graph, plot the width against the number of layers.  
 
C. Exercise: You will probably realize that running very many layers takes longer. 
Instead of trying to run very large networks, try to extrapolate based on the data 
you have. Where would the susceptibility curve for a network with 1000 layers 
have its peak? What would be the width of its susceptibility curve at half 
amplitude?  
 

 
 

2. Dynamic range 
In addition to being sensitive to slight changes in inputs (susceptibility) neural 
networks also meaningfully encode a wide range of different input strengths. This 
is known as dynamic range, discussed in the book on pages 78-79. Our auditory 
system, for example, can process sound intensities that differ by ten orders of 
magnitude. We will again use a feed-forward branching model to explore how the 
dynamic range is affected by the branching ratio.  
 
Now, instead of stimulating the network with only one neuron in the first layer, we 
will cycle through all possible stimulation values. For example, if a network has 
100 neurons per layer, we will stimulate with values from 1 to 100. The activity 
will then propagate through the layers and the output response will merely be the 
number of neurons that are active in the last layer of the network. This will be 
done many times so we can get a distribution of response values for each input 
value. As we’ll see, the dynamic range is a way of measuring the breadth of the 
response distribution.  
 
Let’s start by just looking at the output of a feed-forward network after it has been 
given a wide range of inputs. Use the function FeedForwardBranchingModel4 
as shown below:  

 
[stim, response] = FeedForwardBranchingModel4(neurons, layers,… 
connects, BR, iterations); 
 
Here, pick “neurons” = 64, “layers” = 3, “connects” = 5, “BR” = 1.5, “iterations” = 
500: 
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[stim,response] = FeedForwardBranchingModel4(64, 3, 5, 1.5, 500); 
 
If you run it, it will produce the two output variables “stim” and “response” – do 
not delete these just yet, as we will use them in the next steps. In the Matlab 
Workspace window, you should be able to see the variable “stim.” Click on it to 
see the different stimulation values that were given. After that, click on 
“response” to see what it looks like. From this, you should be able to get an idea 
of the variety of responses. Still, it is not easy to read such a large array.  
 

 
 
 
Next, we will plot the distribution of response values so it can be visualized. Use 
the function ResponseProbability like this:  
 
[probS, probR, dynamicRange, info, Hresp, Hcond] = … 
ResponseProbability(stim, response); 
 
There are many variables here, but for our purposes right now we will only be 
concerned with “probS,” “probR” and “dynamicRange.” These give the probability 
of the stimulus, the probability of the response and the dynamic range, 
respectively. If you take the output variables “stim” and “response” that were 
produced by your previous run of FeedForwardBranchingModel4, and feed them 
into ResponseProbability, you should then see a plot of the distribution of the 
response values. It should look something like the left plot in this figure below.  
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As you can see, when the branching ratio is 1.5, in this network the output layer 
never produces more than 58 active neurons in the last layer. This limits the 
range of responses the network can give, so it cannot encode very large 
stimulation values. However, it does do a fairly good job of producing different 
response probabilities when it is stimulated in the range of 1 to about 43. Each 
time the stimulus is increased, the response probability generally increases also.  
 
To quantify the ability of the network to encode this range of values, we can 
measure the width of the response distribution in the following way: take its 
cumulative sum and mark when it reaches 20% and 80% of the total (see the 
right plot in the figure above for the cumulative sum of the probability). We can 
now find the response values that correspond to those percentiles. These are 
just the red lines in the left panel of the figure, dropped down to the x-axis. There, 
we can see that the corresponding response values are about 22 and 44. The 
distance between those values we can call the dynamic range. Note that one 
could have also picked 10% and 90% cumulative probabilities, for example – this 
is another common way to measure the dynamic range. The function 
ResponseProbability automatically picks 20% and 80% markers and draws 
vertical gray lines, as shown in the plot on the left. Given this background, you 
should be able to do the set of exercises for this section.  
 
D. Exercise: Using the same set of values for “neurons,” “layers,” “connects” and 
“iterations,” now vary the branching ratio, “BR,” from 0.5 to 2.5 in increments of 
0.25 and measure the dynamic range. Plot the dynamic range against the 
branching ratio. You should see a function that has a peak; show the plot.  
 
E. Exercise: Repeat exercise D again, but this time vary the number of layers in 
the network while keeping the number of neurons per layer fixed at 64. For 
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example, try 10 layers now instead of 3. How does this affect the dynamic range? 
How does it affect the shape of the plot of dynamic range vs branching ratio?  
 
F. Exercise: Repeat exercise D again, but this time vary the number of neurons 
in the layers while keeping the layers fixed at 3. For example, try 128 neurons 
per layer instead of 64. How does this affect the dynamic range? How does it 
affect the shape of the plot of dynamic range vs branching ratio? 
 
G. Exercise: Repeat exercise D again, but this time increase both the number of 
layers and the number of neurons in the layers. Do these changes interact in 
some way? If so, how? From this, can you estimate what would happen in a 
network with very many neurons and layers?  

 
H. Exercise: One of the output variables of ResponseProbability that we did not 
look at previously is “Hresp,” which stands for the entropy of the response 
distribution. How does “Hresp” relate to the dynamic range? Does it peak at the 
same BR? Pages 75-76 of the book offer a brief description of entropy and how it 
could be applied to a distribution. See also Figure 4.2. One further note: the 
entropy of the response, Hresp, is sometimes also called the information 
capacity. We are now moving towards mutual information – see more below.  
 
 
 

3. Mutual information 
 
The book explains the intuition behind mutual information on pages 10-12. Very 
briefly, it can be described as a guessing game of sorts: if you know the output of 
a network, to what extent are you now able to correctly guess what the input 
was? Mutual information is a principled way to quantify this precisely. Pages 74-
77 explain this in more detail. The remarks below are intended to describe 
mutual information in a way that builds on the previous set of exercises 
measuring dynamic range in feed-forward networks. 
 
We have been working with feed-forward networks so far. To apply mutual 
information in these circumstances, one would take the activity in the first layer to 
be the input and the activity in the last layer to be the output. By seeing activity in 
the last layer, could you narrow down the possible inputs that caused it?  
 
Interestingly, this approach can also be used in recurrent networks, where there 
is no clear input layer or output layer. Here, instead of looking at layers, we could 
look at the activity in the network at some initial time and compare it to the 
activity at some later time. In this situation, time would play the role that layers 
played in the feed-forward network. By seeing the network activity at time t = 10, 
could you even partially reconstruct what the activity in the network was at time t 
= 0? 
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One other remark is in order – this concerns the difference between magnitude 
and configuration. In the case of dynamic range, we asked whether the 
magnitude of the output could tell us something about the magnitude of the input. 
There was a simple type of mapping that we were looking for: as the inputs got 
larger, we expected the outputs to get larger too. A large dynamic range would 
allow this mapping to extend widely, so that more of the input space could be 
encoded. We found that broad distributions had a larger dynamic range than 
narrow ones. In the last exercise of the previous section, you should have 
noticed a relationship between the response entropy, Hresp, and the breadth of 
the response distribution. The broader the distribution, the higher the value of 
Hresp. Roughly speaking, entropy measures how flat a distribution is.  
 
However, it is easy to see that information could be carried not just by magnitude 
but by configuration also. For example, imagine that the initial input configuration 
to a network was a pattern of active neurons that formed either an “X” or an “O.” 
This might occur in a retina viewing two different symbols. Further imagine that 
the number of active neurons in both cases was exactly the same. Here, we 
probably would not get very far in guessing the input symbol if we only counted 
the number of active neurons 10 time steps later. We would need to know 
something about the neurons’ arrangement to guess which input pattern 
occurred at time t = 0.  
 
Fortunately, mutual information can take configuration into account as well as 
magnitude. It does this by looking at the conditional entropy, Hcond, in addition to 
the previously mentioned response entropy Hresp. Intuitively, Hcond is related to 
the breadth of the output distribution when the same input is presented again and 
again. If a network is to reliably transmit information, we would expect it to have a 
very narrow range of outputs when it is presented with the same input 
repeatedly. Ideally, it would only have one output when the same input was 
presented. This would lead to a very narrow distribution, causing Hcond to be 
small or even zero. Hcond is sometimes called the “equivocation” because it 
measures the uncertainty in the response to the same input.  
 
The mutual information involves both Hresp and Hcond. Hresp quantifies the 
breadth of the entire output distribution, while Hcond quantifies the breadth of the 
output distributions for each input. For mutual information to be large, we need a 
large Hresp for all the inputs taken together and a small Hcond for each 
individual input. The equation for mutual information between a set of stimuli, S, 
and a set of responses, R, can be given by:  

 
𝑀𝑀𝑀𝑀(𝑆𝑆;𝑅𝑅) = 𝐻𝐻(𝑅𝑅)− 𝐻𝐻(𝑅𝑅|𝑆𝑆) 

 
Here, H(R) is Hresp and H(R|S) is Hcond (see page 76 of the book). As you can 
see, the upper bound of MI is set by Hresp; for this reason it is also called the 
“information capacity.” Hcond only detracts from this information capacity; it is 
also called the “equivocation.” 
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Now that we have given this background, you should be prepared to do the 
following exercises.  
 
 
I. Exercise: Using RecurrentInfoFunction, produce the output variables “TotalMI,” 
“Hresp” and “Hcond” for a recurrent network. You can use it like this:  

 
[TotalMI, Hresp, Hcond, BRs] = RecurrentInfoFunction(N, r, c,… 
connects, reps, timesteps, increments, increment, numNets); 

 
Where “N” is the number of neurons selected from the recurrent network to be 
used as input. The same number, but different neurons, will be used for output. 
The variables “r” and “c” determine the total number of neurons in the network 
(total number = r x c). “Connects” is the number of connections from each neuron 
to other neurons. “Reps” is the number of times the activity will be repeatedly run 
through the network. “Timesteps” is the number of time steps the recurrent 
network will be run for. “Increments” is the number of different branching ratios to 
be tried. “Increment” is the difference between each branching ratio, given that 
they will start out at 0.1 for the first branching ratio (notice that the output variable 
“BRs” gives the sequence of branching ratios tried). “numNets” is the number of 
networks to be run and averaged. To start, use these input values:  
 
[TotalMI, Hresp, Hcond, BRs] = … 
RecurrentInfoFunction(6,4,4,6,100,15,21,0.2,2); 

 
This should produce output in about 7 - 10 minutes and will be good enough to 
see some plots with the general features you will be looking for. Mutual 
information calculations can be intensive and take longer than the exercises we 
have done up to this point. If there are 6 neurons in this case being stimulated, 
how many different configurations could they have (assume each could be either 
on (1) or off (0)). Keep the output variables “TotalMI,” “Hresp,” “Hcond,” and 
“BRs” because we will use them later as inputs to other functions.  
 
 
J. Exercise: Plot the mutual information against time by using the function 
InfoVsTime:  
 
InfoVsTime(TotalMI, BRs); 
 
You should see something like the figure below.  
 



10 
 

 
 
By looking through all the plots for the individual branching ratios (right side of 
figure above), you should be able to identify the curve that maintains the highest 
information by the last time step. Which branching ratio corresponds to that 
curve? Now plot the final information value (at the last time step) for each of 
these curves against the branching ratio.  
 
 
K. Exercise: Next plot the mutual information against the branching ratio. Do this 
by using the function RecurrentMIplotter as shown below:  

 
RecurrentMIplotter(TotalMI, BRs); 
 
If you used the suggested parameters above, you should get a plot that looks like 
this:  
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Notice that each curve represents a snapshot of the mutual information present 
at each time step. The first time step has the most mutual information, while the 
last time step has the least. Why are the early curves broad and why are the later 
curves more sharply peaked?  
 
 
L. Exercise: Plot the response entropy and the conditional entropy separately. 
You can do that by using EntropyPlotter, like this:  
 
EntropyPlotter(Hresp, Hcond, BRs); 
 
You should get plots that look like this:  
 

 
 
Given the earlier exercise on the susceptibility, does it make sense that the 
Hresp curve should also show a peak? Can this reasoning be applied equally 
well to the Hcond curve? Why or why not?  
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Why is the plot of (Hresp – Hcond) so small? Zoom in on it - is it the same as the 
mutual information plot you made previously?  
 
From the Hresp and Hcond curves, as well as the susceptibility curves seen 
earlier, it looks like output variability is maximal near the critical point. This would 
seem to be bad for reliable transmission of information. Yet the mutual 
information curves peak near the critical point. Explain why this is the case.  
 
 
M. Exercise: As with the susceptibility and the dynamic range, we will now look at 
how these results scale with increased network size. Starting with the parameters 
used above (N = 6, r = 4, c = 4, timesteps = 15, numNets = 2), we will 
systematically vary them to see their effects.  
 
First, what are the effects of increasing the number of networks used? Increase 
numNets from 2 to 20. How does the curve look different? Note that this will take 
ten times longer to run than your previous run, so plan accordingly.  
 
Second, what are the effects of decreasing the size of the network (go from 4 × 4 
to 3 × 3) on the mutual information curve? What are the effects of increasing the 
size (go to 6 × 6)?  
 
Third, what are the effects of decreasing the number of neurons stimulated (go 
from 6 to 4)? What are the effects of increasing this number (go from 6 to 8)? 
 
Fourth, what are the effects of increasing the number of timesteps used? For 
example, go from timesteps = 15 to timesteps = 30?   
 
Fifth, if you really have access to lots of computing power, you could run these 
networks with very large sizes and for very long times. Below is a figure showing 
a Brunel model network, like the one used at the beginning of the exercises for 
Chapter 3, when it is scaled up (figure from Beggs, 2022, Frontiers in 
Computational Neuroscience). Notice that the peaks for the mutual information 
curves move toward the point where g = 3 (g is the control parameter in this 
model). To the right is an asymptotic plot for multiple runs of the model at various 
sizes. Fitting an exponential curve to this plot produced a best estimate of the 
critical value of g. Attempt a similar analysis for the recurrent branching model 
here.  
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Matlab code used for exercises in this chapter, listed in order of use:  

 
FeedForwardBranchingModelFunction  
weights2 
spy2 
SusceptibilityCalc 
SusceptibilityDemoFunction 
ResponseProbability 
remove 
RecurrentInfoFunction 
RecurrentModel    
RecurrentInfoTester   
bin2dec2 
FindInformation  
InfoVsTime 
RecurrentMIplotter 
EntropyPlotter 
 


