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Exercises for Chapter 7, Quasicriticality 
 

The data reviewed in Chapter 7 suggest the cortex is not operating exactly at the critical 
point. In addition, the exponents are found to move along a scaling line. We discussed 
four hypotheses to explain this situation: quasicriticality, slight subcriticality, 
subsampling, and Griffiths phases. In the exercises below we will illustrate and explore 
aspects of most of these ideas.  

 

1. Quasicriticality 

Recall that the main idea in quasicriticality is that spontaneous activity prevents a neural 
network from operating exactly at the critical point. There are three specific 
consequences of this that we will examine here. First, spontaneous activity 
concatenates avalanches, making their sizes and durations larger. This causes the 
avalanche distribution plots to become less steep; the magnitude of their exponents 
thus decreases (Figure 7.2). Second, spontaneous firing always causes activity to be 
present in the network. This removes the distinction between an absorbing phase and 
an active phase. The phase transition is thus abolished, and true criticality cannot be 
achieved (Figure 7.4). Third, the continuous background activity tends to homogenize 
the variability, causing the susceptibility curve to be reduced and broadened (Figure 
7.5). This has a similar affect on the mutual information within the network, where peaks 
in these curves will also fall.  

In what follows, we will examine each of these consequences of quasicriticality by 
subjecting the branching model (without self-organization) from the Chapter 6 exercises 
to different amounts of spontaneous background activity. We will approach these 
exercises not in the order in which they were just explained, but in order of how much 
computational time they take, from the least to the most.  

Mutual information: Here we will plot mutual information curves predicted by 
quasicriticaity. The branching process model from (Zapperi et al., 1995) is run on a 
binary tree where each layer of the tree doubles the number of nodes it has. We can 
select two nodes in the second layer as “inputs,” and, say, eight nodes in the fourth 
layer as “outputs.” However, there is not a one-to-one correspondence of nodes here, 
so we will have to coarse-grain the activity in the fourth layer by taking a majority rule, 
shown in the figure below.  
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Once this is done, we can stimulate the network many times and calculate the mutual 
information between layer 2 and layer 4.  

 

A. Exercise: Before calculating the mutual information, though, let’s just see how 
spontaneous activity affects the raster. To do this, use BranchingProcessFunction like 
this:  

[TIMERASTER] = BranchingProcessFunction(Layers, BR, iterations, 
Pspont); 
 

with input values of Layers = 4, BR = 1, iterations = 1000, and Pspont = 0. Take the 
TIMERASTER and look at it by typing:  

figure; spy2(TIMERASTER) 

You should see something like the figure below, where layers are plotted along the y-
axis and time steps are along the x-axis:  
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Note that the number of blue dots fades as you go to higher network layers (from top to 
bottom of the plot), giving us intuition about how many layers the avalanches tend to 
propagate. Use the tools at the upper left of the figure to zoom in on one avalanche to 
see how the layers are represented in the TIMERASTER. If you cannot see the 
structure that easily, then rerun the function with a larger number of layers, say 8. With 
more layers the structure should be more obvious.  

 
Verify that you see avalanches in the manner depicted in the figures here. If you do, 
then you should be ready to move to the next step.  
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B. Exercise: Now we can explore how information is transmitted through such fading 
avalanches.  

To explain this in slightly more detail, recall from the previous description that each time 
the single node in the first layer is activated, an avalanche is triggered. Because this 
single active node transmits to the two nodes in the second layer with a probability of 
0.5, then the four configurations of nodes in the second layer (00, 01, 10, 11) will be 
visited with equal probability; these will be the four input/stimulus configurations for our 
mutual information measures. After many avalanches, we should have roughly equal 
numbers of each input configuration. To get the output/response, it would be convenient 
to observe four configurations (00, 01, 10, 00) at some downstream layer. But notice 
that in the higher layers, we have more than four nodes. For example, in the fourth 
layer, we have eight nodes. How will we map the activity in these eight nodes onto 
merely four configurations? To do this, we will use “coarse graining,” where we will take 
the average activity in a group of four nodes and round it up or down so that it can be 
treated as a 1 or 0, respectively. As shown in the first figure for this chapter’s exercises, 
this procedure creates an output/response that has the same number of nodes as the 
input. For every avalanche stimulated in this network, we will have an input 
configuration from layer 2 and a coarse-grained output configuration from layer 4. This 
allows us to calculate mutual information between the stimulus and the response similar 
to what we did before in the exercises from Chapter 4.  

To calculate the mutual information, take the TIMERASTER that you just produced and 
feed it into BP_infoPrep:  

[stim, resp] = BP_infoPrep(Layers, stimLayer, respLayer, iterations, TIMERASTER); 
 
where Layers is the number of layers in the network (this can be the same 4 as what 
you used in the previous exercise, but it does not have to be this number – it can be 
greater), stimLayer = 2 and respLayer = 4. The more iterations you have, the better 
statistics you will get for the mutual information measure (10000 is usually good enough 
for this exercise). The output variable stim contains all the configurations (00, 01, 10, 
11) observed in the simulation layer stimLayer and the output variable resp contains all 
the coarse-grained configurations observed in a downstream response layer, respLayer.  
 
Next, you should take the outputs stim and resp and feed them into FindInformation, 
using a dim = 2 because this is the dimension, or number of bits, in the input and output 
streams. 
 
[info, Hresp, Hcond] = FindInformation(stim, resp, dim); 
 

Here, the mutual information in bits will be given in the output variable info; Hresp will 
give the entropy of the response in bits; Hcond will give the entropy of the response, 
conditioned on the input, in bits. Now that you have a mutual information value, re-run 
the programs with the same values, except gradually increase Pspont to 0.01, 0.05. 
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What happens to the mutual information? Does it decline, as you might expect from 
quasicriticality? Why not?  

To get a more complete picture of what is going on, we will now plot mutual information 
curves for different values of Pspont. Recall that quasicriticality does not merely predict 
that mutual information should drop as spontaneous activity is increased, but that the 
peaks of the mutual information curves should drop and that they should be shifted to 
lower values of the branching ratio.  

C. Exercise: For plotting these curves and comparing them to each other, run 
PspontInfoLoop; this took about 90 seconds on my laptop to run. You should see a plot 
of mutual information against the branching ratio for four different values of Pspont. 
What do you notice about the peaks in terms of their height and their positions? 
Knowing how these curves look, can you now explain why you might think that 
increasing Pspont causes mutual information to increase for a fixed branching ratio? In 
other words, can you pick a branching ratio for which the value of the mutual information 
curve will increase as Pspont increases?  

 
Changes in the phase diagram: In Figure 7.4 from the book (shown below), you can see 
the prediction that spontaneous activity will abolish the phase transition. As Pspont is 
increased, the inactive phase to the left of the critical point (where the branching ratio is 
< 1.0) is no longer inactive. Here we will test this idea in our branching process model.  

 
To do this, we will sample activity in the last layer of a 6-layer network, run for 10000 
iterations as we sweep the branching ratio from 0 to 2 and as we sweep Pspont through 
these values: 0, 0.01, 0.1, 0.25. Doing all this at once can be accomplished by running 
the program PspontPhaseLoop. With these settings, it took about 20 minutes running 
on my laptop.  

D. Exercise: Run PspontPhaseLoop and then examine the phase diagram it produces. 
This program automatically loops through several values of Pspont and the branching 
ratio. While it’s output plot will not look exactly like the schematic diagram shown above, 
it will still have some characteristic features. You should see a black curve for the case 
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when Pspont = 0, and then three colored curves corresponding to the other nonzero 
values of Pspont. Answer the following questions:  

1. For what values of the branching ratio does the black curve show an inactive or 
absorbing phase? Recall that an absorbing phase is one where activity does not amplify 
but is damped (see Figure 3.3 A in the book). Where would you identify the critical 
point? Ideally, when Pspont = 0, the critical point should exist at the boundary between 
the inactive/absorbing phase and the active phase.  

2.  For what values of the branching ratio does the lowest colored curve show an 
absorbing phase? Where would you identify the critical point? 

3. Does the location of the critical point (as seen with the black curve) change if the 
model is (a) run with more layers? Or (b) run for more iterations? Note that both 
changes may take considerably more computing time. To make things run faster, it 
might be helpful to modify the loop and only run through a limited number of branching 
ratio values, restricted to those that are near the location of the critical point you 
identified in 1 above.  

 

Changes in exponents: Recall Figures 7.2 and 7.3 from the book that describe how 
spontaneous activity will affect the exponents. Can we see such changes in our simple 
branching model programs? 

Yes, the TIMERASTERs produced for different values of Pspont can be used to assess 
how avalanche size and avalanche duration distribution exponents change. To do this, 
though, we will need to run networks with more layers for more iterations. Unfortunately, 
this will take longer to run on your computer.  

E. Exercise: You should use Layers = 14, BR = 1.0, iterations = 100000, and run the 
following lines of code:  

[TIMERASTER] = BranchingProcessFunction(Layers, BR, iterations, Pspont); 
[sizeDist, durationDist, SvsT, Events] = AvalancheAnalysis(TIMERASTER); 
[CCS, CCD] = GetCCDFs(sizeDist, durationDist);  
[alpha, tau, gamma_est, gamma_act, error] = ExponentRelation(CCS, CCD, SvsT, 1, 8); 
 

Do this for values of Pspont = 0.0, 0.00005, 0.0001, 0.0005, 0.001.  

How do the avalanche size distributions change in appearance as Pspont increases? 
How do the avalanche size and duration exponents change?  

If you want to run these all at once in a single script, just use PspontExponentLoop. This 
took about 2.5 hours to run on my laptop. While it is possible to use larger values of 
Pspont, this can take much longer to compute with a 14 layer network.  

 
  



7 
 

2. Slightly subcritical 

Most data show living neural networks to be operating slightly below the critical point. 
This naturally leads to the view that the cortex would be chronically subcritical to avoid 
seizures while still processing information as optimally as possible (Figure 7.6). Could 
this idea also harmonize with the fact that the cortex is always receiving external inputs 
and that it is often homeostatically adjusting?  

F. Exercise: To investigate the effects of external inputs, we will use 
BranchingProcessFunction and drive the network with increasing amounts of 
spontaneous activity. We will see how this affects the branching ratio. Run the function: 

[TIMERASTER] = BranchingProcessFunction(Layers, BR, iterations, Pspont); 
 
Good parameters to use here would be Layers = 10, BR = 1.0, and iterations = 1500. 
Give it Pspont values in this range: 0.0, 0.10, 0.15, 0.25. To measure the branching 
ratio in this binary tree network, use BPF_estimator like this:  

[BRest] = BPF_estimator(TIMERASTER) 

For each value of Pspont, plot the estimated values of the branching ratio. 
Mathematically, what type of relationship do you see (e.g., nonlinear, linear, increasing, 
decreasing)? Note that you gave BranchingProcessFunction a fixed branching ratio of 
1.0 as input; this does not homeostatically adapt.  

G. Exercise: Now we will repeat this experiment, but with a self-organizing branching 
process. Use the same parameters as before (with the addition of A = 1), with the 
program SOBP_Pspont_function, like this:  

[TIMERASTER, BranchingRatio] = SOBP_Pspont_function(Layers, iterations, A, Pspont); 

For each value of Pspont, plot the output variable BranchingRatio, the average value of 
the branching ratio after homeostatic adjustment. Mathematically, what type of 
relationship do you see (e.g., nonlinear, linear, increasing, decreasing)? Note that this 
function does homeostatically adapt. 

Comment on how these results may or may not guide our interpretations of the 
experimental data.  

H. Exercise: Next let’s look at how the branching ratio changes over time in actual 
spiking data. Select one of the data sets from the data folders provided with these 
exercises. For example, go into the folder “OrganotypicData” and then the subfolder 
“Rat” and load “RatDataSet2” into the Matlab workspace. You can do this by dragging 
and dropping it, as we previously explained in the exercises to Chapter 3. This will 
produce a data object called ASDF that will serve as input to the ASDFToSparse 
function, as shown here:  

[TIMERASTER, binunit] = ASDFToSparse(ASDF); 

Next, use the TIMERASTER as input to the function BRplotter:  
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BRplotter(TIMERASTER) 
 
This should produce a plot showing the branching ratio over time and a histogram of the 
branching ratio values measured every 10 seconds. Note that this program may 
occasionally produce error messages saying “Local minimum possible.” Unfortunately, 
there is no way to completely avoid these messages from popping up in the data sets 
we have. Fortunately, they do not always occur, so the estimates are still worthwhile.  

Try this for several data sets, then answer the following questions. 

1. Is the mean branching ratio in the data sets you sampled slightly less than 1.0?  

2. Do the tails of the histogram extend equally above and below the mean of the 
histogram?  

3. Comment on the hypothesis that the cortex consistently operates in the slightly 
subcritical regime.  

 

3. Subsampling 

When exponents are extracted from spiking neural networks, they often show that the 
exponents change in magnitude over time; they move along a scaling line. While 
quasicriticality has a possible explanation for why these exponents move, there is 
another potential explanation: subsampling. Figure 7.7 in the book shows how this could 
work with a fully connected model of a critical branching process. When all the nodes of 
the network are sampled, analysis produces exponents that agree with the mean field 
for a critical branching process. Yet when only some of the nodes are sampled, these 
exponents grow in magnitude. Thus, subsampling could potentially account for how the 
exponents move along a scaling line.  

This hypothesis has two main components. First, it states that the number of neurons 
recorded will vary over time. Second, it states that as this number decreases, the 
exponents will increase in magnitude, meaning that the distributions will decline more 
steeply.  

I. Exercise: We will first examine how the number of neurons recorded can vary over 
time. One way to see this would be by taking an hour long TIMERASTER and breaking 
it up into 100 second segments. In each segment, we can count the number of neurons 
that have fired at least once. Does this number vary widely over time, or is it relatively 
stable? What fraction of neurons can drop out between successive 100 second 
segments?  

To check this, load a spike data set (organotypic cultures or dissociated cultures) and 
obtain a TIMERASTER (recall the instructions above, or also from the Chapter 3 
exercises). Next, use the program NumNeuronsOverTime:  

NumNeuronsOverTime(TIMERASTER, Window); 
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The Window parameter gives the number of time samples that should be contained in 
one sampling period. For example, if the data were binned at 1 kHz, there were 1000 
samples per second. To create a sampling period of 100 seconds, Window should be 
set to 1000 bins/second x 100 seconds = 100000. For a recording that is about one 
hour (3600 seconds) you should get about 36 data points for each 100 second window. 
Running the program should produce two plots. The first will just be the number of 
neurons that fired at least once in each 100 second window. The second will be a 
histogram of how often each number of neurons was observed.  

 
Try this with several data sets and then answer the following questions:  

1. Is the variability in the number of neurons recorded typically greater than 25% 
(assuming a window of 100 seconds)?  

2. If the window length is now increased to 1000 seconds, what is this new variability?  

3. If the window length is reduced to 10 seconds, what is the new variability? 

4. What window length would be needed to observe a nearly power-law distribution of 
avalanche sizes? 

 

J. Exercise: Now that we have some idea of how much the number of active neurons 
can change over the course of a recording, we can subsample a population by this 
amount to see if it causes changes in the exponents. To do this, use the function 
subSampler, like this:  

[TIMERASTERsub] = subSampler(TIMERASTER, fraction); 
 



10 
 

where fraction is the proportion of neurons from the original TIMERASTER that will be 
included in the subsampled TIMERASTERsub. For example, if a TIMERASTER has 
100 neurons and you select fraction = 0.75, then TIMERASTERsub will have 75 
randomly chosen neurons. Note that here we will keep the entire one hour recording but 
subsample the number of neurons to see how it may change the avalanche distribution 
exponents.  

First, obtain the exponents (alpha, tau, gamma_act) for the entire one hour recording by 
running this set of functions, as before (review the instructions given in the Chapter 3 
exercises if you need to):  

[sizeDist, durationDist, SvsT, Events] = AvalancheAnalysis(TIMERASTER); 
[CCS, CCD] = GetCCDFs(sizeDist, durationDist); 
[alpha, tau, gamma_est, gamma_act, error] = ExponentRelation(CCS, CCD, SvsT, LimL, 
LimU); 
 
Second, subsample the TIMERASTER by some fraction and run these programs again, 
obtaining a second set of exponents (alphaSub, tauSub, gamma_actSub).  

Third, try this for several data sets and for several fractions. Understand that extreme 
subsampling may reduce the number of data points to nearly zero in a size distribution. 
Trial and error should give you a sense of what reasonable limits are for each data set. 
Plot the original exponents in the (alpha, tau) plane as before (Figures 3.12, 5.3). Do the 
exponents move upward along the scaling line as the number of neurons sampled 
decreases?   

 

 

 

Matlab code used for exercises in this chapter, listed in order of use:  

BranchingProcessFunction 
spy2  
BP_infoPrep 
bin2dec2 
FindInformation 
PspontInfoLoop 
AvalancheAnalysis 
GetCCDFs 
ExponentRelation 
PspontExponentLoop  
PspontPhaseLoop 
runStats 
BPF_estimator 
SOBP_Pspont_function 
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ASDFToSparse 
BRplotter 
NumNeuronsOverTime 
subSampler 
 

 

 


