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Exercises for Chapter 3, The Critical Point 
 
 

1. The phase transition point 
One of the hallmarks of a continuous phase transition is that an order parameter 
continuously changes value as a function of a control parameter. The region 
where the order parameter rapidly changes can be used to identify the phase 
transition point. To illustrate this, Figure 3.3 in the book shows a plot of firing rate 
(order parameter) against the constructed branching ratio (control parameter) for 
a simple branching model network. Another signature of a continuous phase 
transition is that some functions will show sharp peaks near the phase transition 
point. For example, Figure 4.5 in the book shows that the susceptibility of a 
branching model has a peak near the phase transition region.   
 
A. Phase plot: In these exercises, we will see if similar plots can be made with a 

spiking neural network model. The well-known Brunel model (Brunel, 2000, 
Journal of Computational Neuroscience) consists of 80% excitatory and 20% 
inhibitory integrate and fire neurons sparsely connected to each other (at 10% 
connectivity). Jonathan Touboul and Alain Destexhe made a computational 
model of this network (Destexhe and Touboul, 2021, eNeuro) with open 
source code. I have modified their code to create the Matlab function 
BrunelNetworkFunctionTimeConstant. In this version of the model there is no 
random background activity driving the network. Rather, the network is 
stimulated once by simultaneously activating a fraction of the neural 
population.  
 
Exercise: Using this function, record the average firing rate (“FR,” the order 
parameter) of the Brunel model under different values of the control 
parameter, “g.” To do this, set “ratio” = 1, “Jc” = 1 and vary “g” from 0 to 5 in 
small steps (say 0.25).  
 
Use this line of code to get the FR for a single set of input values: 
 
[A chi FR] = BrunelNetworkFunctionTimeConstant(gee, ratio, Jc) 
 
Based on this plot of FR vs g, where would you predict the phase transition to 
be (in terms of the value of “g”)? 

 
 

B. Peak in time constant: Continuing with the Brunel model, again use 
BrunelNetworkFunctionTimeConstant (with “ratio” = 1, “Jc” = 1) to plot the 
network activity over time in response to a single stimulation. This information 
is given by plotting the output variable “A” (see the figure below for 
examples). You can get such plots by using these lines of code:  
 
figure; plot(A); xlabel("Timesteps"); ylabel("Neurons active");  
ylim([0 1000]); 
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Exercise: How does the response to stimulation change as the control 
parameter “g” is increased, like in the previous exercise? Note that the 
network activity can quickly rise, quickly decay, or slowly decay. To quantify 
the time of this change, run the script BrunelTimeConstantFinal to fit 
exponential curves to the average of 30 stimulations for each value of “g.” 
Note: this requires the Matlab Curve Fitting Toolbox, so don’t do this if you do 
not have the toolbox. To use the Brunel network simulation, just type this in 
the Matlab Command Window: 
 
BrunelTimeConstantFinal; 
 
You should get several plots that look like this:  
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You should also get a plot of the time constants found vs “g” (not shown here – 
for you to find out).  

 
 

2. Looking at data 
The book discusses how avalanches from a network near the critical point should 
approximately follow power law distributions (page 56, Figure 3.4 for models; page 66, 
Figure 3.11 for experimental data). For example, Figure 3.11 shows distributions plotted 
in log-log coordinates for avalanche size, duration and average size vs. duration. These 
distributions should have regions that can be fit by straight lines if the network is near 
the critical point. For these exercises, data of several different types are available: (1) 
Spiking data from cortical slice cultures placed on a 512-electrode array, (2) Spiking 
data from dissociated cultures grown on 60-electrode arrays, (3) Local field potential 
(LFP) data from cortical slice cultures placed on 60-electrode arrays. These data are 
recordings of spontaneous, unstimulated activity. We will examine the data’s structure 
and then work our way toward plotting power law distributions and examining other 
signatures of operating near the critical point.  
 
C. Structure of neural network activity: We will first look at the structure of the 

data at long-time scales and at short time scales. Select one of the data sets 
from the folders provided. For example, go into the folder “OrganotypicData” 
and then the subfolder “Mouse” and load “DataSet4” into the Matlab 
workspace. You can do this by dragging and dropping it, as in the screenshot 
below. Alternatively, go to the Home tab in Matlab and then click on the 
Import Data button. 

 
 
Second, if necessary, get the data into TIMERASTER format. (1) If the data 
are from the “LFP60Data” folder, they already have a TIMERASTER variable 
present after loading and you do not need to do this step. (2) If you are 
loading data from the “DissociatedCultures” folder, you should use the 
function Dissociated2TIMERASTER to produce a TIMERASTER for analysis, 
like this:  
 
[TIMERASTER] = Dissociated2TIMERASTER(data); 
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(3) If you are using data from the “OrganotypicCultures” folder, after the data 
are loaded into Matlab you should see a cell array with the name ASDF. To 
convert this cell array into TIMERASTER format, use the function 
ASDFToSparse like this:  
 
[TIMERASTER, binunit] = ASDFToSparse(ASDF); 

 
Once you have a TIMERASTER in your Matlab workspace you can use the 
function VisualizeRaster to plot the data in raster form (neuron number on y-
axis, time on x-axis, blue dots represent spikes or suprathreshold LFPs). Most 
recordings are 1 hr long and so should have 3.6×106 time steps when the 
time bins are 1 ms long. Use the function like this:  
 
VisualizeRaster(TIMERASTER); 
 

 
Use the zoom tool on the figure to look at a network burst at shorter time 
scale. This script will also plot the population activity at each time step, which 
is just the number of neurons active in each time bin. If you zoom into this 
plot, you should be able to see an individual avalanche where there is a 
series of consecutively active time bins bracketed by inactive time bins. 
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Exercise: Describe how the temporal structure differs between spike data and 
LFP data. How does the temporal structure differ between spiking data 
recorded from organotypic cultures (using the 512 electrode array) and 
spiking data recorded from dissociated cultures (using the 60 electrode 
array)? Notice that for very large numbers of neurons, it becomes more 
difficult to find an inactive time bin. Under these circumstances, can you 
suggest how avalanches be defined?  
 

D. Avalanche distributions: Using the function AvalancheAnalysis, plot the 
distributions for avalanche size, duration and average size for a given 
duration. Use it like this:  
 
[sizeDist, durationDist, SvsT, Events] = AvalancheAnalysis(TIMERASTER); 
 
Save the output variables sizeDist, durationDist, SvsT, and Events for 
later use (e.g., see part G below).  
 
Exercise: Do all the distributions show sharp power laws? Can you identify 
distributions that look slightly subcritical or slightly supercritical (see Figure 
3.10)? Take a random sample of 20 data sets. What fraction look like they 
have straight power law regions? Example plots are shown below.  
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E. Rebinning the data: Many of the spike data sets are binned at 1 ms 
resolution. This resolution may be too small for some data sets, because the 
time it takes for activity to propagate from one recording site to the next 
nearest site may be greater than 1 ms. If this is the case, then the data will be 
artificially fragmented. Under these conditions, the avalanche distributions will 
curve downward, presenting as subcritical. What is needed is a bin width that 
approximately matches the average propagation time between adjacent 
recording sites. To find this proper bin width, you can use the function 
rebinRaster like this:  
 
[TIMERASTER2] = rebinRaster(TIMERASTER, 2); 
 
This takes a “TIMEASTER” originally binned at 1 ms resolution and creates 
“TIMERASTER2” binned at 2 ms resolution. Gradually increase the bin width 
until you see nearly straight power laws. This works for data that show 
signatures of criticality but will not work for data that are truly subcritical (as 
we will see later). For more details, see this paper: (Notarmuzi, Daniele, 
Claudio Castellano, Alessandro Flammini, Dario Mazzilli, and Filippo 
Radicchi. "Universality, criticality and complexity of information propagation in 
social media." Nature communications 13, no. 1 (2022): 1-8.)  
 
Exercise: Now, if you go back to your 20 randomly sampled data sets and re-
bin them at larger values, what fraction of them appear to have straight power 
law segments when passed through the AvalancheAnalysis function? If you 
re-bin by a factor of 20 or 30, can you make the avalanche distributions look 
supercritical, like what is shown in Figure 3.10 C of the book? 

 
 

F. Temporal structure (shuffling): The avalanche size distributions reflect the 
propagation of activity through neural networks at relatively short time scales. 
It would stand to reason then that disrupting the temporal structure of these 
avalanches should also disrupt their distributions. Use the timeShuffle 
function to randomly shuffle the data by maintaining the same number of 
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events in each channel but randomizing when they occur in time. You can 
use it like this: 
 
[TIMERASTERshuf] = timeShuffle(TIMERASTER); 
 
Temporal structure (jittering): Use the JitterRaster function to jitter the event 
times by different amounts (e.g., sigma = 2000 bins, which would be 2 s if the 
data are binned at 1 ms resolution). “sigma” is the standard deviation of a 
normal distribution from which the jitter times are drawn. This is a milder form 
of temporal shuffling when the choice of “sigma” is smaller than 2 s. You can 
use the function like this:  
 
[JRASTER] = JitterRaster(TIMERASTER, sigma); 

 
Exercise: After using shuffling or jittering, now plot the disrupted avalanche 
distributions (again using AvalancheAnalysis) and compare them to those 
from the original data. What differences do you notice? Example plots are 
shown below. Can you explain why these differences occur? What is the 
largest value of “sigma” for which these plots still look about the same?  
 

 
 
Another question: Can shuffled or jittered data that appears to be subcritical 
somehow be “rescued” and made critical again? To try this, take a disrupted 
data set (shuffled or jittered sufficiently) that has a downwardly curving 
avalanche size distribution. Now re-bin it by some factor (e.g., 2, 4, 10, 20) to 
see if this curve can be straightened out and made to look like a power law. Is 
this successful? Why or why not? What are the implications of your results for 
data interpretation?  
 
 

G. Exponent relation: Another signature of being near the critical point is the 
exponent relation (page 66). Here, we will attempt a very quick way to assess 
if this is satisfied. We will explain a more rigorous and time-consuming way 
later. For this quick check, we will transform the original avalanche 
distributions into a format where they show less variability; this will allow us to 
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discern regions for power law fitting more clearly. To make this 
transformation, we will construct complementary cumulative distribution 
functions (CCDFs) for each original distribution. Briefly, the CCDF is based on 
the cumulative sum of the distribution up to each value of x. This cumulative 
sum smooths out the bumpiness that is apparent in the original distributions. 
In this way, it reduces the variability. Here is an example of what it looks like:  

 
 
If we obtain the CCDFs for both avalanche size and duration distributions, it 
allows us to select domains where they appear to have approximately 
straight-line regions.   

 

 
Use the function GetCCDFs to obtain CCDFs for both avalanche size and 
duration distributions: 
 
[CCS, CCD] = GetCCDFs(sizeDist, durationDist);  
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Once you have these, discern a straight-line region from the CCDF plots, if 
there is one. This will allow you to pick a lower limit and an upper limit over 
which power law fittings will be attempted. For the examples shown in the 
figure above, it looks like the limits for the size distribution would be [100, 
101.6] = [1, 40]; for the duration distribution they would be [100, 101.4] = [1, 25]. 
Therefore, the domain over which we could expect scaling to apply would to 
both distributions would be the intersection of these two, from 1 to 25.  
 
To see if the exponent relation can now be fit, use the function 
ExponentRelation like this (providing as inputs the variables you obtained 
earlier: CCS, CCD, SvsT):  

 
[alpha, tau, gamma_est, gamma_act, error] = ExponentRelation(CCS, CCD, SvsT, LimL, LimU); 

 
Where “LimL” is the lower limit and “LimU” is the upper limit. The function will 
plot linear fits to the CCDFs over this domain and will return the estimated 
exponents “alpha,” “tau,” “gamma_est” (gamma estimated from the exponent 
relation), and “gamma_act” (gamma estimated from the size vs duration plot).  
 
You can tell by looking at the plots if the linear fits are reasonable or not. For 
example, in the first figure below they are reasonable, while in the second 
they are not. The fit quality can be quantified by reading the norm of the 
residuals given by the least squares fit, which the function puts out for each 
fit. For the fits in the first figure below, these values are 0.106, 0.026, 0.031, 
all of which are acceptably low. When they are larger, the fits are poor, as 
shown in the second figure below. This should also be evident by looking at 
them. In that case, you should consider another region of the CCDF curve for 
fitting. Alternatively, the data may need to be re-binned. If this does not 
improve the fit, the data are perhaps not nearly critical; not all data sets are.  
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Finally, ExponentRelation will return another value, called “error” as a 
measure of how close “gamma_act” and “gamma_est” are to each other. An 
accepted value in the literature is for the “error” ≤ 0.20 (Ma et al., 2019). This 
is a measure of how well the exponent relation is satisfied.  
 
Exercise: Using the exponents “alpha” and “tau,” plot 10 data sets on the 
alpha, tau plane like what is shown in the book (Figures 3.15, 5.3). Do they lie 
along a line whose slope matches that given by “gamma_act?” What happens 
to these exponents if the data that produced them is shuffled or jittered? Plot 
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“alpha” and “tau” for the same data set after increasing amounts of jitter (say, 
“sigma” = 10, 100, 1000, 10000).  
 
 

H. Avalanche shape collapse is another indication that a system is operating 
near the critical point. Using the function ShapeCollapse, perform avalanche 
shape collapse on the data you examined previously.  
 
[Shapes] = ShapeCollapse(Events, LimL, LimU, interval, gamma_act); 

 
Here, the data structure Events was previously produced by 
AvalancheAnalysis, and interval is just a variable that allows you to plot 
every other avalanche if it equals 2, or every avalanche if it equals 1. 
Sometimes the plots get too dense if all avalanche shapes are included.  
 

 
 
Exercise: Find several Organotypic data sets that show good collapse. Next, 
jitter these data sets by increasing amounts (try “sigma” = 2, 5, 10, 20, 50, 
100 ms). At what value of jitter does the collapse typically fall apart? For 
comparison, note also how the avalanche distributions look after jittering by 
these amounts. Which signature of criticality is the most fragile to jittering: 
Power laws? Exponent relation? Shape collapse? Explain why you think this 
is the case.  

 
 

I. A tunable branching model: The book uses the simple branching model to 
illustrate many of the concepts surrounding criticality in neural networks. In 
fact, the first half of Chapter 3 is devoted to showing how this tunable model 
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can show multiple signatures of criticality. The second half of the chapter is 
devoted to seeing if these signatures are present in the experimental data. In 
these exercises, things are run in reverse. Now that you have explored 
signatures of criticality in the data, you will see if you can produce these 
signatures when a simple model is appropriately tuned. The function for 
simulating the branching process is called BranchingModel. It takes as inputs 
the number of timesteps the simulation is to be run (“timesteps”), the rows 
(“r”) and columns (“c”) of the sheet of neurons to be simulated (r × c = number 
of neurons), the probability of each neuron spontaneously firing (“p”), the 
refractory period of each neuron after firing (“refperiod”), the number of 
connections each neuron is to have (“connects”), the constructed branching 
ratio for the network (“BR”), as well as the exponent by which the network 
transmission probabilities will decay when they are listed in descending order 
(“beta”). Sample values are shown below.    
 

       [TIMERASTER] = BranchingModel(timesteps, r, c, p, refperiod, connects, BR, beta); 
 
       [TIMERASTER] = BranchingModel(1000000, 12, 12, 0.0001, 10, 10, 1.0, 0.5); 
 

Running the model for 1 million time steps, as suggested here, took about 20 
seconds on my laptop (Intel Core i7-8750H CPU @ 2.20 GHz, 16 GB Ram, 
64 bit operating system, x64-based processor). While more time steps and 
more neurons produce better statistics, you should explore what run times are 
reasonable for you, given your equipment.  
 
Exercise: Plot avalanche distributions for the model as you sweep “BR” from 
0.5 to 1.5 by increments of 0.1. If you save the data, you can perform multiple 
analyses later (see next exercise). Report on the following: The quality of 
linear fits to the avalanche distributions (if possible), the error in the exponent 
relation (if possible), and the quality of avalanche shape collapse. Note that 
we will examine finite size effects in the exercises for the next chapter.  
 
For each value of “BR,” calculate the total number of active neurons from the 
TIMERASTER output – you can get this by just taking the double sum of 
timeraster: TotalNum = sum(sum(TIMERASTER)). Now plot the total number 
of active neurons against “BR.” Does it look like the phase plot that was 
produced by Exercise A in this chapter? Could it be similar, only reversed?   
 
 

J. More rigorously examining criticality: The previous methods for fitting power 
laws are rapid estimates, but there is a more exact and time-consuming way. 
As mentioned in the book (page 180), there are several software packages 
that do automated fitting to data to see if a power law distribution is more 
likely than another distribution, like a lognormal. The script AutomatedFitting 
will do this if the data is first put into a TIMERASTER format. This script is 
only slightly modified from a script named demoempdata that was first 
introduced with the analysis toolbox by (Marshall, Timme, et al., 2016). This 
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toolbox, NCCToolboxV1, should be loaded into your Matlab path so it can 
provide the functions needed by AutomatedFitting. Note that this analysis 
may take significantly longer and, in some cases, does not always converge. 
However, it converged within a few minutes on my computer when I gave it 
the output of BranchingModel described in the previous section (see the 
figure below). Another useful toolbox for fitting power laws, though it does not 
perform avalanche shape collapse, can be found in (Alstott, Bullmore and 
Plenz, 2014).  
 

 
 

Exercise: Use the AutomatedFitting script to process the “TIMERASTER” output 
from BranchingModel as you sweep “BR” from 0.5 to 1.5 by increments of 0.1. For 
what values of “BR” does there appear to be reasonable avalanche shape 
collapse?  

 
 

K. The empirically measured branching ratio, σ, is an indicator of proximity to the 
critical point. In an ideal branching model, when σ=1, the network is exactly 
critical.  
 
Exercise: Use the function branchingEstimate (adapted from the methods 
discovered by (Wilting and Priesemann, 2018)) to estimate the branching 
ratio in a sample of the data sets (say, 20). Measure the branching ratio also 
in corresponding shuffled data sets. Plot the distribution of branching ratios 
obtained from actual data and shuffled data, similar to what is shown in 
Figure 3.9 of the book. What differences do you notice? Is there any 
relationship between the shape of the avalanche size distributions and the 
estimated branching ratios? Is there any relationship between the estimated 
branching ratios and the quality of the avalanche shape collapse?  
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Matlab code used for exercises in this chapter, listed in order of use:  

 
BrunelNetworkFunctionTimeConstant 
BrunelTimeConstantFinal 
DemoScriptChapter3 
ASDFToSparse 
Dissociated2TIMERASTER 
VisualizeRaster 
spy2 
AvalancheAnalysis 
runStats 
rebinRaster 
branchingEstimate 
timeShuffle 
JitterRaster 
GetCCDFs 
ExponentRelation 
ShapeCollapse 
BranchingModel 
AutomatedFitting  
TIMERASTER_to_asdf2 
NCCToolboxV1 (a toolbox containing many functions needed for 
AutomatedFitting) 
 
 

 
 


